Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Большой головной мозг

    Так, при резком повышении температуры головной мозг человека получает от воспринимающих периферических рецепторов очень большой поток информации, который переориентирует на аварийный режим работы все физиологические системы. Высокая температура угнетает кору головного мозга и нарушает точность двигательных актов. По этой причине нарушаются сенсорные и психические процессы человека, координация движений. [c.149]


    Следы серебра (порядка 0,02 мг Ag на 100 г сухого вещества) содержатся в организмах всех млекопитающих, но его биологическая роль не ясна, У человека повышенным содержанием Ag [0,03 мг на 100 г свежей ткани, или 0,002% (масс.) в золе] характеризуется головной мозг. Интересно, что в изолированных ядрах его нервных клеток — нейронов — серебра гораздо больше [0,08% (масс.) в золе]. С пищевым рационом человек получает в среднем около 0,1 мг Ag за сутки. Относительно много его содержит яичный желток (0,2 мг в 100 г). [c.417]

    Внешние раздражители (звуковые,. световые и др.) воздействуют на анализаторы человека, в которых происходит анализ раздражений. Анализаторы состоят нз рецепторов, осуществляющих преобразование энергии внешнего раздражителя в нервный процесс, нервных путей и коры больших полушарий головного мозга, иначе называемой мозговым концом. Нервные пути обеспечивают передачу нервных возбуждений от рецепторов в мозговой конец. Наряду с указанной связью между рецептором а мозговым концом имеется и обратная связь через волокна. Наличие обратной связи позволяет воспроизводить действия на основе полученной информации и сравнивать их с действием внешнего раздражителя. [c.9]

    У крыс наибольшая концентрация эндогенного 5-ГТ наблюдается в желудочно-кишечном тракте (1,2—3,9 мкг/г) и селезенке (2,5 мкг/г). Анализ его внутриклеточной локализации показал, что в клетках головного мозга 60— 70% 5-ГТ накапливается в митохондриях, тогда как в клетках слизистой оболочки пищеварительного тракта большая часть 5-ГТ локализуется в особых плазматических гранулах. Его концентрация в крови крыс составляла [c.57]

    Перорально 5-МОТ вводили в дозе 250 мг/кг. Максимальный уровень активности отмечался во всех исследованных органах через 30 мин в следующем убывающем порядке почки, кровь, печень, селезенка, мышцы и головной мозг. Большая часть активности выводилась из организма в течение 6 ч после введения. По данным хроматографического анализа, через 30 мин после введения 60% меченых соединений в почках и 80% — в других тка- [c.58]

    Представьте себе, что нервный рецептор в коже или в каком-либо другом из органов чувств воспринимает сигнал. Этот сигнал проходит по сенсорному нейрону (афферентное волокно) вверх к головному мозгу. Пройдя два или более синапса (обычно один в спинном мозге и один в таламусе), сигнал в конце концов попадает в определенную сенсорную область коры больших полушарий. Отсюда в модифицированной форме он распространяется через вставочные нейроны практически по всей коре мозга. Как в синапсах, так и в коре распространение сигнала [c.329]


    Общий объем воды, потребляемый человеком в сутки при питье и с пищей, составляет 2—2,5 л. Благодаря водному балансу столько же воды и выводится из организма. Через почки и мочевыводящие пути удаляется около 50—60 % воды. При потере организмом человека 6—8 % влаги сверх обычной нормы повышается температура тела, краснеет кожа, учащается сердцебиение и дыхание, появляется мышечная слабость и головокружение, начинается головная боль. Потеря 10 % воды может привести к необратимым изменениям в организме, а потеря 15—20 % приводит к. смерти, поскольку кровь настолько густеет, что с ее перекачкой не справляется сердце. В сутки сердцу приходится перекачивать около 10 000 л крови. Без пищи человек может прожить около месяца, а без воды — всего лишь несколько суток. Реакцией организма на нехватку воды является жажда. В этом случае ощущение жажды объясняют раздражением слизистой оболочки рта и глотки из-за большого понижения влажности. Существует и другая точка зрения на механизм формирования этого ощущения. В соответствии с ней сигнал о понижении концентрации воды в крови на клетки коры головного мозга подают нервные центры, заложенные в кровеносных сосудах. [c.9]

    По фармакологическим свойствам этиловый спирт относится к веществам наркотического действия. Воздействуя на кору головного мозга, он вызывает характерное алкогольное возбуждение, в больших дозах — ослабление возбудительных процессов коры и угнетение деятельности дыхательного центра. [c.171]

    Серое вещество головного мозга представлено в основном телами нейронов, а белое вещество —аксонами. В связи с этим указанные отделы мозга значительно различаются по своему химическому составу. Эти различия носят прежде всего количественный характер. Содержание воды в сером веществе головного мозга заметно больше, чем в белом (табл. 19.1). В сером веществе белки составляют половину плотных веществ, а в белом веществе — одну треть. На долю липидов в белом веществе приходится более половины сухого остатка, в сером веществе—лишь около 30%. [c.628]

    Фосфопротеины в головном мозге содержатся в большем количестве, чем в других органах и тканях,— около 2% от общего количества всех сложных белков мозга. Фосфопротеины обнаружены в мембранах различных морфологических структур нервной ткани. [c.630]

    В сером веществе головного мозга фосфоглицериды составляют более 60% от всех липидов, а в белом веществе — около 40%. Напротив, в белом веществе содержание холестерина, сфингомиелинов и особенно цереброзидов больше, чем в сером веществе. [c.630]

    Количественное соотношение неорганических анионов и катионов в мозговой ткани свидетельствует о дефиците анионов. Расчет показывает, что для покрытия дефицита анионов потребовалось бы в 2 раза больше белков, чем их имеется в мозговой ткани. Принято считать, что остающийся дефицит анионов покрывается за счет липидов. Вполне возможно, что участие липидов в ионном балансе —одна из функций головного мозга. [c.632]

    Установлено, что белки в головном мозге находятся в состоянии активного обновления, о чем свидетельствует быстрое включение радиоактивных аминокислот в молекулы белков. Однако в разных отделах головного мозга скорость синтеза и распада белковых молекул неодинакова. Белки серого вещества полушарий большого мозга и белки мозжечка отличаются особенно большой скоростью обновления. В участках головного мозга, богатых проводниковыми структурами —аксонами (белое вещество головного мозга), скорость синтеза и распада белковых молекул меньше. [c.635]

    Homo habilis (человек умелый). Эта группа существовала 1,5—2 млн. лет назад. Ее представители были прямоходящими, имели относительно большой головной мозг и пользовались различными орудиями. [c.119]

    Биотехнология и электроника готовят новый поворот в этой области, например, электронные элементы на основе биополимеров и дальнейшее познание закономерностей работы нервных клеток головного мозга - нейронных сетей - позволят создать в очень недалеком будущем принципиально новый тип устройства компьютеров на основе биологических молекул. Они будут вмонтированы в головной мозг. Вот тогда информационное пространство станет частью сознания и будет буквально восприниматься человеком как физическая реальность. Человек будет перемещаться мгновенно в различные части мира, используя систему ИНТЕРНЕТ и другие сети космических масштабов. Человек станет еще более информационным существом. В среде виртуального информационного пространства можно, например, путешествовать на Марс уже сейчас, сидя за персоналкой . Но никакая информационная сеть не заменит живого общения между людьми. Дело в том, что информационные сети передают модели, некие информационные структуры, которые являются отражением живых людей или определенных представлений об окружающем Мире. Они не тождественны людям - это образы людей и явлений. Книги также являются такими моделями, но, в отличие от Информационных сетей, книги оставляют больший простор мышлению. Книги должны писать профессионалы. Писатель и журналист создает привлекательные, обобщенные информационные модели - литературные образы. Современный ИНТЕРНЕТ - это гигантская книга, страницы которой пишут все кому не лень домохозяйки, школьники, хакеры. Бухгалтерская информация причудливо смешана с религией, порнографией, научными работами и коммерческими объявлениями. Несмотря на очевидную пользу - ускорение обменом информацией, ИНТЕРНЕТ наносит ущерб своей низкокачественной и просто вредной для человека информацией. Отрицательной стороной прогресса являются информационные преступления и компьютерный фетишизм. Компьютер - это не более чем средство хранения, передачи и обработки информации, но он имеет более опасные последствия, чем чтение плохой книги или просмотр плохой телепередачи. [c.36]


    При сравнении метаболизма цистамина у мышей и крыс Титов и соавт. (1974) после внутрибрюшинного введения цистамина в дозе 150 мг/кг отметили, что содержание в крови тиолов и дисульфидов достигает максимума у мышей уже через 5 мин, у крыс несколько позже, через 15 мин. К 5-й минуте суммарное содержание цистамина и МЭА было у мышей в 2 раза выше, чем у крыс, а отношение цистамина к МЭА составляло у мышей 1 8, а у крыс только 1 2. Эти данные говорят о замедленном всасывании цистамина из брюшной полости крыс. К 5-й минуте содержание цистамина и МЭА в печени и головном мозге мышей быдо в 1,8—2,1 раза выше, чем у крыс. К 15-й минуте концентрация обоих препаратов у мышей и крыс становилась одинаковой, через 30 мин после введения она была выше у крыс. Видовые различия заметно проявлялись в суммарном увеличении количества небелковых дисульфидов в тканях. Не участвовавшего в метаболизме цистамина в тканях крыс выявлено значительно больше, чем у мышей, что свидетельствует о замедленном ферментативном расщеплении цистамина в организме крыс по сравнению с мышами. По-видимому, эти видовые различия и являются причиной большей чувствительности крыс к цистамину. [c.49]

    Наружные части мозга вместе с базальными ганглиями иногда называют теленцефалон (конечный мозг). Глубоко в середине головного мозга расположен промежуточный мозг (диэнцефалон), состоящий из таламуса (точнее таламусов), гипоталамуса, гипофиза и прилегающих областей. Основная структура в задней части головного мозга — мозжечок. Кора мозжечка, как и кора больших полушарий, образует многочисленные складки. 30 млрд. нейронов мозжечка организованы высокоупорядоченным образом [37]. Способы взаимосвязи нейронов семи типов, присутствующих в этом отделе мозга, были исследованы чрезвычайно детально. [c.328]

    К числу нейронов, выделяющих ацетилхолин, относятся моторные нейроны, образующие нервно-мышечные соединения, все преганглио-нарные нейроны автономной нервной системы и постганглионарные нейроны парасимпатической нервной системы. Большое количество других холинэргических синаптических областей обнаружено также в головном мозге. [c.332]

    В настоящее время установлено, что в головном мозге, включая мозжечок и кору больших полушарий, повсеместно содержатся катехо-ламиновые нейроны. Очень крупные дофаминсодержащие нейроны были обнаружены в мозге брюхоногих моллюсков проводится работа по изучению ответов индивидуальных нейронов зтого типа [64]. [c.338]

    Имеются данные, свидетельствующие о том, что в клетках головного мозга транскрибируется значительно большая часть генома, чем в других клетках [128, 129]. Так, 20% ДНК мозга человека гибридизируется с мРНК, синтезированной в клетках мозга. В клетках других органов и тканей транскрибируется примерно вдвое меньше ДНК. У человека количество транскрибируемой ДНК выше, чем у мыши [128]. В связи с этим следует упомянуть о том удивительном факте, что в мозге человека и мыши нет общих по электрофоретической подвижности форм ферментов [129]. Значение этих факторов пока неясно. [c.350]

    П. широко распространены в природе встречаются во всех клетках животных (иногда до 22% по массе от общего содержания фосфолипидов) и в отдельных видах растений. В больших кол-вах П. содержатся в спинном и головном мозге, сердечной мышце и плазме крови. Могут накапливаться в тканях при нек-рых патологич. состояниях, напр, при ишемии сердечной мьппцы. [c.552]

    Биохимические нарушения представляют большой теоретический интерес в связи с тем, что они проливают свет на значение отдельных процессов обмена веществ в этой книге мы нередко будем говорить о такого рода заболеваниях. Разумеется, основная цель изучения этих болезней состоит в поиске средств их лечения. В некоторых случаях, например при фенилкетонурии (гл. 14, разд. 3.5) или при галактоземин (гл. 12, разд. А.1), своевременно изменив диету больного, удается предотвратить необратимое повреждение головногО мозга — органа, который при этих заболеваниях обычно страдает в первую очередь. Во многих других случаях соответствующих методов лечения до сих пор не существует поиски путей введения в организм недостающего фермента — своего-рода генная хирургия — относится к одной из наиболее увлекательных областей современной медицинской биохимии (гл. 15, разд. 3.4). [c.41]

    Чаще всего встречающимся и наиболее изученным сфинголипидо-эом является болезнь Тей — Сакса. Впервые она была описана в 1881 г., и с тех пор было описано более 500 случаев этого заболевания. Это тяжелая болезнь, сопровождающаяся задержкой развития головного мозга, слепотой, параличом, слабоумием больные погибают в возрасте около 3 лет. Ежегодно в Северной Америке рождается примерно 30 детей с этой патологией, а в целом на земном шаре эта цифра, вероятно, в 5—7 раз больше. [c.544]

    На долю белков приходится примерно 40% от сухой массы головного мозга. Мозговая ткань является трудным объектом для изучения белкового состава вследствие большого содержания липидов и наличия белково-ли-пидных комплексов. [c.628]

    В нервной ткани обнаружен ряд спещ1фических белков, в частности белок 8-100 и белок 14-3-2. Белок 8-100, или белок Мура, называют также кислым белком, так как он содержит большое количество остатков глутаминовой и аспарагиновой кислот. Этот белок сосредоточен в основном в нейроглии (85-90%), в нейронах его не более 10-15% от общего количества белка в головном мозге. Установлено, что концентрация белка 8-100 возрастает при обучении (тренировках) животных. Пока нет оснований считать, что белок 8-100 непосредственно участвует в формировании и хранении памяти. Не исключено, что его участие в этих процессах опосредованно. Белок 14-3-2 также относится к кислым белкам. В отличие от белка 8-100 он локализован в основном в нейронах в нейроглиальных клетках его содержание невелико. Пока неясна роль белка 14-3-2 в выполнении специфических функций нервной ткани. [c.630]

    Новорожденным и половозрелым крысам и морским свинкам вводили диазепам в дозе 5 мг/кг и,изучали его метаболизм и распределение 1451 Оказалось, что через 30 мин после введения препарата его концентрация в головном мозге крысят превышала в два, а через 60—180 мин — в 5 раз таковую у взрослых особей. В эти же сроки количество дезметилдиазепама у крысят было в 40,5 и 115 раз больше, чем в мозге взрослых животных. Достоверными были различия и в содержании метилоксазепама и оксазепама. Не столь резко отличались результаты опытов на морских свинках. Тем не менее количество дезметилдиазепама в мозге новорожденных в три-четыре раза превышало его у взрослых организмов. [c.168]

    Изучение субклеточного распределения нитразепама в клетках печени, легких, сердца и головного мозга белых крыс показало [239] их преимущественную локализацию во фракциях клеток печени. Нитразепам равномерно распределяется в обломках клеток, растворимо фракции и несколько ниже — в митохондриях, микросомах и ядрах. Однако амин в больших количествах присутствует [c.206]

    Сложный процесс обоняния совершается с помоп ью обонятельных клеток, имеющих отростки. Эти отростки обращены в носовую полость и заканчиваются обонятельными булавами, несущими чувствительные волоски. Волокна обонятельного нерва заканчиваются в коре больших полушарий головного мозга. Анатомически это имеет некоторую общность с органами зрения..  [c.11]

    Позвольте мне проиллюстрировать этот тезис. Истинная функция нейрона — передача сигналов. Однако мы увидим (гл. 5), что в нервной системе существуют только два типа сигналов электрические и химические. Важно отметить, что сам сигнал содержит очень мало информации. Его специфичность зависит от мест возникновения и приема, т. е. от клеток органов, между которыми он передается. Так, например, причина того, что мы слышим, а не видим звук, кроется не в электрическом или химическом коде нервного импульса, а в том, что зрительная кора затылочной доли головного мозга соединена с нейронами сетчатки, а не уха. При электрическом или механическом, а не оптическом воздействии на сетчатку мы также будем видеть . Любой, у кого искры из глаз сыпались после сильного удара, может подтвердить это. Следовательно, качественно информация, передаваемая нейроном, зависит исключительно от специфичности его соединения, и только количественная характеристика содержится, по-видимому, в самом сигнале сильный стимулятор посылает больше нервных импульсов от рецептора к воспринимающему органу, чем слабый. Опять же нервные импульсы, скажем, оптической или акустической области нашей нервной системы практически неотличимы от нервных импульсов в совершенно других системах, например у более примитивных форм жизни. Сами по себе эти импульсы очень мало информативны даже для узкого специалиста. Таким образом, нейрохимик, изучающий биохимию нейронов, может выяснить только механизм возникновения и передачи сигналов, специфическое содержание (смысл) сигналов недоступно его методам. Он может изучать общие молекулярные реакции, лежащие в основе обработки сигналов, но не результаты этой обработки, т. е. информацию . [c.8]

    Беспозвоночные, за исключением речного рака, не имеют мие-линизированных волокон. Однако встречаются начальные стадии. миелинизации, когда аксоны покрываются несколькими слоями шванновской клетки — протомиелином. В ходе эволюции миелинизация волокон становится доминирующей. Важное преимущество, сопровождающее этот процесс, — достигаемая компактность всей системы. Такая экономия пространства гораздо в большей степени важна для головного мозга, чем для спинного мозга. [c.93]

    Опиаты обладают как анальгетическим, так и эйфорическим действием. Распределение опиатных рецепторов в головном мозге было исследовано с помощью радиоактивно меченных лигандов и флуоресцентно меченных антител против энкефалинов. Особенно большая плотность рецепторов обнаружена в лимбической системе — эволюционно самом древнем отделе, который отвечает за эмоциональное возбуждение и в котором локализованы эйфорические и эмоциональные компоненты болеутоляющего действия опиатов [19]. В спинном мозге они непосредственно действуют на проводимость болевых ощущений. Исследование этого отдела ЦНС как раз дает прямые доказательства физиологической роли опиатных рецепторов. Они являются, вероятно, пресинаптическими соединениями и поэтому их следует искать в нервных окончаниях. Отмечалось, что опиаты ингибируют высвобождение вещества Р [20] — соединения, которое, как пола- [c.289]


Смотреть страницы где упоминается термин Большой головной мозг: [c.148]    [c.419]    [c.339]    [c.138]    [c.137]    [c.176]    [c.328]    [c.427]    [c.15]    [c.294]    [c.12]    [c.1044]    [c.632]    [c.639]    [c.640]    [c.262]    [c.87]    [c.181]   
Биология Том3 Изд3 (2004) -- [ c.307 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Большой мозг



© 2025 chem21.info Реклама на сайте