Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вынужденное движение

    При вынужденном движении теплоносителя коэффициент теплоотдачи от поверхности теплообмена к жидкости, которая течет с заданной скоростью, определяется критериями Рейнольдса и Прандтля. Критерий Грасгофа может быть введен только в случаях, когда на теплообмен заметное влияние оказывает естественная конвекция. [c.42]

    Пример 11-4. Используя метод анализа размерностей, найти критериальное уравнение теплоотдачи при турбулентном вынужденном движении жидкости в прямой трубе круглого поперечного сечения. [c.22]


    В критерий Галилея пе входит скорость потока, а критерий Архимеда отражает разность плотностей жидкости в двух различных точках потока, т. е. при естественной конвекции. Обычно одновременное равенство различных критериев подобия в изучаемых потоках невозможно, и поэтому прн моделировании учитывают лишь те критерии, которые отражают влияние основных сил, действующих в потоке. Так, при перекачивании жидкости насосом по трубопроводу влияние силы тяжести можно не учитывать и исключить поэтому из рассмотрения критерий Фруда. Обычно общий вид зависимости при вынужденном движении жидкости по трубопроводу имеет вид [c.49]

    ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОМ ДВИЖЕНИИ ТЕПЛОНОСИТЕЛЯ [c.42]

    При вынужденном движении теплоносителя вдоль оребренной поверхности шаг ребер может быть выбран очень малым. [c.200]

    При вынужденном движении теплоносителя у оребренной поверхности коэффициент теплоотдачи может быть равным или даже больше коэффициента теплоотдачи гладких труб. Например, за.меры теплоотдачи при старостях 1—6 м/сек показали, что коэффициент теплоотдачи у реб- [c.202]

    На фиг. 98 приведены результаты экспериментального исследования теплопередачи при вынужденном движении воздуха через пучок ребристых трубок. Результаты представлены в виде зависимости коэффициента теплопередачи к от скорости течения воздуха. Опыты проводились при обогреве трубок паро.м и водой. У ребристых трубок размеры наружной (оребренной) и внутренней (гладкой) поверхностей различны. Это различие необходимо учитывать при выводе формулы для расчета коэффициента теплопередачи. Обычно теплопередачу относят к единице гладкой (внутренней) поверхности трубки. При этом справедливо соотношение [c.202]

    При ориентировочном расчете нагревателя, изображенного на фиг. 97, можно принять следующие значения коэффициента теплопередачи к (в трубки подается водяной пар или горячая вода) при свободном движении газа /г = 4ч-10 ккал/м час °С, при вынужденном движении газа перпендикулярно трубкам /г=10-ь40 ккал/м час °С. [c.203]

    В напорных и дренажных каналах плоскокамерного модуля реализуется двумерное течение газа с односторонним или двусторонним отсосом или вдувом при этом канал может быть ориентирован горизонтально или вертикально. В рулонных модулях кривизна канала не слишком велика, и в первом приближении можно использовать модели двумерного течения, однако следует учесть меняющуюся ориентацию стенок канала относительно вектора силы, связанной с гравитацией. В трубчатых и половолоконных элементах внутренний канал обладает симметрией тела вращения, течение в них также двумерно. Внешняя цилиндрическая поверхность элемента омывается потоком газа, возникает задача массообмена на проницаемых поверхностях, образованных пучком трубок. Следует отметить, что свободноконвективное движение (возникающее при потере устойчивости двумерного вынужденного движения вследствие концентрационной неоднородности плотности среды) в общем случае усложняет течение газа, делает его трехмерным. [c.121]


    Интенсификация массообмена за счет наложения свободной конвекции по сравнению с вынужденным движением показана на рис. 4.23. Видно, что ускорение процесса весьма значительно и сильно различается на верхней и нижней стенках канала. [c.149]

    Вид теплообмена Для вынужденного движения Для свободного движения [c.21]

    Анализ методов пассивной интенсификации конвективного теплообмена при вынужденном движении турбулентных потоков показывает, что основной источник интенсификации теплообмена в турбулентных потоках - повышение степени турбулентности за счет отрывных явлений, вихревых структур и закрутки потока, многократного изменения направления движения и перестройки профиля скорости, а также при введении в поток различных турбулизирующих элементов. [c.336]

    Уравнения (5.27) и (5.28) обычно представляют в степенной форме. Для вынужденного движения парогазовой смеси они имеют вид  [c.159]

    Зависимости (5.132) и (5.133) для вынужденного движения бинарной паровой смеси, записанные в степенной форме, имеют вид  [c.186]

    Рассмотренные выше режимы в основном сохраняются и при кипении жидкости, движущейся в каналах. Однако в большинстве своем задачи, связанные с отдельными аспектами кипения в потоке, существенно усложняются. Наиболее заметное влияние, вынужденного движения жидкости проявляется в области малых плотностей теплового потока, а также при большой доле пара в потоке. [c.213]

    При моделировании исходят из равенства только тех критериев, которые отражают влияние сил, имеющих наибольшее значение для данных условий. Так, при вынужденном движении жидкости (например, при перекачивании ее насосом) влияние сил тяжести ничтожно мало и равенством критериев Рг в этом случае можно пренебречь. [c.149]

    На участке / теплоотдача определяется конвективными токами жидкости при вынужденном движении однофазного потока. При повыщении температуры поверхности теплообмена до значения, несколько превышающего температуру насыщения, начинается пристенное кипение жидкости (участок //), которое сменяется развитым пузырьковым кипением (участок ///). Участок развитого кипения заканчивается прп достижении массовой доли пара в потоке Ху , после чего наступает режим ухудшенного теплообмена (участок /V) и перегрев пара (участок V). [c.238]

    При вынужденном движении воздуха со скоростью 0.08—0,5 м сек, средней температуре воды до охлаждения 11—25° С, диаметре труб 0,012—0,030 м и отношении шага труб к их диаметру 2—1,7, илотности орошения водой 820— 960 кг (м ч)  [c.566]

    Формула (УП-98) не учитывает влияния вынужденного движения жидкостей (которое увеличивает ( кр) и состояния поверхности нагрева. [c.575]

    Высота слоя жидкости над нагреваемой поверхностью практически не влияет на интенсивность теплоотдачи [VII-]]. Формула ( 11-99) не учитывает влияния вынужденного движения жидкости и условий смачивания поверхности нагрева. Расчет по ней можно производить лишь при наличии надеж-ных данных по физическим свойствам жидкостей. [c.576]

    Поясним сказанное, вспомнив, что передаточные функции блоков строились при нулевых начальных условиях (см. стр. 231). Другими словами, фактически везде изучалась устойчивость вынужденного движения выходных переменных комплекса (схемы), у которого при < = О (т. е. в момент начала действия возмущения) все переменные имели нулевые отклонения от положения равновесия. Для полного исследования устойчивости стационарных режимов схемы такой анализ может быть недостаточным. Это объясняется исключительно тем, что нули (1е1 Е — В) могут сократиться с нулями либо всех элементов матрицы В, либо матрицы С, и формально передаточная функция РГ не будет иметь полюсов в правой полуплоскости. Чтобы выяснить поставленный вопрос, надо изучить еще изменения переменных комплекса (схемы), считая, что на входе его уже нет никаких возмущений как функции времени, но начальные условия уже не являются нулевыми, т. е. в действительности здесь исследуется переходный режим при ненулевых начальных условиях. [c.253]

    Противоположно направленные свободная и вынужденная конвекции при ламинарном течении. В [4] считается, что теплоотдача для ламинарной свободной конвекции, противоположно направленной вынужденному движению, может быть описана с помощью (1), в котором знак + за- [c.318]

    В горизонтальной трубе вследствие свободного двнжс ния (конвекции) возникает поперечная циркуляция капельной жидкости (рис. 1.8). Частицы жидкости одновременно участвуют в поперечной циркуляции и в продольном вынужденном движении. В результате сложения этих движений траектории частиц приобретают сложный вид винтовых линий. [c.21]

    При вынужденном движении потока жидкости, когда естественной конвекцией жидкости можно пренебречь, из критериального уравнения исключают критерий Грасгофа  [c.137]

    Разработан метод и приведены структуры [31, с. 47—51, 133— 135 40 52 66] расчета а при естественном и вынужденном движении газов между пластинами в пластинчато-трубчатых поверхностях. Предложено обобщенное критериальное уравнение для расчета а при вынужденном поперечном омывании оребренных труб и прямоугольных пучков труб в погружных аппаратах [40 50 53—55 56, с. 36—38]. Уравнение пригодно для 24 различных типов поперечного оребрения с овальными, круглыми, прямоугольными, квадратными, спиральными, пластинчатыми ребрами на круглых и овальных трубах в коридорном и шахматном пучках. Специфика расчета а для ребер различной формы учитывается введением фактора формы Кф и корректирующего коэффициента Ккор. Фактор формы учитывает отличие в теплоотдаче круглого ребра фиксированных размеров и ребра другой формы и любых размеров. Получены уравнения Кф для всех рассмотренных ребер. Корректирующий коэффициент приводит в соответствие расчетные значения и опытные данные по а разных авторов. Получено уравнение Ккор при использовании графиков и эмпирических зависимостей, соответствующих отечественным, и зарубежным опытным данным. Разработана универсальная структура расчета а, основанная на использовании предложенного обобщенного уравнения и уравнения для Кф и Ккор. [c.232]


    При вынужденном движении потока фазы естественной конвекцией можно пренебречь, тогда из уравнения выпадает критерий Ог  [c.270]

    Таким образом, при подобии вынужденного движения должна существовать зависимость между критериями подобия, которая в общей форме выразится функцией [c.149]

    Для установившегося процесса критерий Фурье исключается. В случае вынужденного движения (влияние объемных сил несущественно) критерии Фруда и Архимеда можно исключить. [c.47]

    В тех случаях, когда панравленпе естественной конвекции совпадает с вынужденным движением тепловых агентов в аппарате, полностью соблюдается закон Паскаля давление, производимое иа жидкость илп газ, распространяется по всем направлениям равномерно и одинаково. Вследствие этого будет выполняться одно из основных условий эффективной тенлонередачи — равномерное обтекание потоком теплообменных поверхностей. Поэтому следует обвязывать теплообменные аппараты трубопроводами так, чтобы нагреваемый агент двигался снизу вверх, а охлаждаемый — сверху вниз. [c.86]

    Расчет коэффициента теплопередачи ггроизводится на основании уравнений теплоотдачи при вынужденном движении в трубах и каналах. При расчете следует учитывать эквивалентный диаметр концентрического сечения в соответствии с формулой [c.206]

    Свободная конвекция, наложенная на вынужденное движение в канале, формирует в условиях отсоса сложное смешанноконвективное движение, которое деформирует диффузионный пограничный слой и существенно меняет локальные характеристики массообмена. Интерферограммы и распределения безразмерной концентрации показаны на рис. 4.17 и 4.18. На начальном участке, до потери концентрационной устойчивости (Яа< <Кас), развитие диффузионного пограничного слоя идентично процессу с устойчивым распределением плотности. При Ка = Кас появляются конвекция и деформация профиля скорости. Далее течение принимает форму вихревых шнуров, что приводит к сильным пульсациям толщины диффузионного пограничного слоя, причем амплитуда пульсаций имеет определенную периодичность, достигая максимального значения в зоне формирования потенциала неустойчивости. [c.145]

    При неодинаковой температуре в сечении возникает естественная конвекция и создается подъемная сила. Это влияет на п[)офиль скорости, причем характер изменения профиля скорости зависит от того как расположена труба, вертикально или горизонтально, и совпадают ли направления свободного и вынужденного движений или они противоположны. Для вертикальной трубы в случае совпадения направлений свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее сверху или нагреве жидкости и подаче ее снизу) у стенки трубы скорость возрастает, а в центре уменьшается (рис. 1.7, а). В случае противоположно направленных свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее снизу или нагревании жидкости и подаче ее сверху) скорость у стенки трубы становится меньше, а в центре больше (рис. 1.7, 6). [c.21]

    В монографии [18] рассмотрено влияние колебательного движения среды на тепломассообмен при вынужденном движении среды. В. М. Бузник систематизировал вопросы интенсификации теплообмена, он приводит приближенные теоретические решения задачи [19]. Обобщения методов экспериментального и теоретического анализа теплообмена и гидродинамики в колеблющихся потоках выполнено Б. М. Галицейским, Ю. А. Рыжовым и Е. В. Якушем [20]. Моделирование и оптимизация тепловых процессов при их интенсификации рассмотрены И. М. Федоткиным [21]. [c.155]

    Гидравлическое сопротивление трубчатой щелевой колонны в сопоставимых рабочих условиях примерно на порядок меньше, чем у вышеупомянутых насадочных колонн (рис. 256). Кох и Файнд [29] определяли в изотермических условиях гидравлическое сопротивление трубчатых щелевых колонн с шириной щели, изменяющейся от 4,05 до 19,68 мм, при одинаковом диаметре наружной трубы, равном 49,96 мм. Ими был также исследован процесс теплопередачи в подобных колоннах при внешнем обогреве наружной трубы. Бек [30] исследовал эффективность теплообмена и гидравлическое сопротивление в трубчатых щелевых колоннах, образованных коаксиально или некоаксиально расположенными трубами, при вынужденном движении и свободной конвекции. [c.341]

    При вынужденным движением жидкости, так и процессом кипения, и для расчета используется зависимость [c.9]

    При вынужденном движении парогазовой смеси опытные данные по тепло- и массоотдаче с погрешностью 8% аппроксимируются следующими критериальными уравнениями  [c.166]

    Вид теплообмена При вынужденном движении теплоносители при свободном движении теплоноси-телл [c.608]

    НОЙ С недостатком жидкости — двумя относительно мало-эффективными формами переноса теплоты. На рис. 3 и 4 зона с пленочным кипением разделена произвольно ка две области пленочное кипение с недогревом и пленочное кипение насыщенной жидкости. Пленочное кипение в условиях вынужденного движения в основном подобно наблюдаемому при кипении в большом объеме. Поверхность нагрена покрывается паровой пленкой, через которую должна передаваться теплота. Коэффициент теплоотдачи на порядок ниже, чем в области перед критическим тепловым потоком, в основном из-за низкой теплопроводности пара, прилегающего к поверхности. [c.381]

    Теплоотдача при вынужденном движении жидкостей. Интенсивность теплоотдачи при вынужденном движении жидкостей зависит в первую очередь от характера движения. Соответственно этому в дальнейшем рассматриваются теплоотдача в условиях установившегося турбулентного движения, теплоотдача в условиях ламипарного движения и теплоотдача в условиях неустойчивого турбулентного движения. [c.138]

    Решение. В общем виде условие гидродинамического подобия. выражается уравнением (6-47). При вынужденном движении газа можно пренебречь влиянием сил тяжести на движение газа и принять Ей =/(Re) (при геометрическом подобии трубопровода и модели). Следовательно, чтобы газы в трубопроводе и в модели двигались подобно, достаточно соблюдать условие Квтр. = КбмОД.  [c.152]

    Проводя аналогию между процессами теплопередачи и диффузии, приходится отметить, что в теплопередаче гидродинамическое подобие потоков полностью характеризуется критерием Рейнольдса только при вынужденном движении с хорошо развитой турбулентностью ири отсутствип такого движ ения, а также в потоках ламинарных и переходных режимов перенос тепла за счет естеств( Нпой конвенции характеризуется критерием Грасгофа. Аналогичный по смыслу критерий введен и для диффузионных процессов [c.34]

    Общий поток дымовых газов, перемещающийся в камеру конвекции, оказывает влиянне на частицы газов, расположенные у радиантной поверхности, вызывая их циркуляцию и передачу тепла вынужденной конвекцией. Такое вынужденное движение газов у радиантных труб неодинаково для различных участков труб. Наибольшую циркуляцию газов, а следовательно, и более интенсивную передачу тепла вынужденной конве1 цией можно наблюдать у труб, непосредственно расположенных над перевальной стеной. [c.432]


Смотреть страницы где упоминается термин Вынужденное движение: [c.22]    [c.299]    [c.348]    [c.113]    [c.239]    [c.69]    [c.561]   
Смотреть главы в:

Динамика атмосферы и океана Т.2 -> Вынужденное движение

Динамика атмосферы и океана Т.2 -> Вынужденное движение


Тепломассообмен Изд3 (2006) -- [ c.14 ]

Теплопередача Издание 3 (1975) -- [ c.126 ]




ПОИСК







© 2025 chem21.info Реклама на сайте