Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы, используемые в титриметрических методах анализа

    Нитритометрия — титриметрический метод анализа первичных и вторичных ароматических аминов, использующий в качестве титранта раствор нитрита натрия. Первичные ароматические амины в кислой среде взаимодействуют с нитритом, образуя диазосоединения  [c.203]

    Ре(П) как восстановитель, а Ре(1П) как окислитель оказываются пригодными прежде всего при анализе часто встречающихся проб, не содержащих железа. Так как величина потенциала системы Ре(1(1) — Fe(ll) относительно невелика, можно, правда, титровать только сильные окислители или сильные восстановители, используя соответственно Fe(ll) или Fe(IH). В качестве сильною восстановителя используют Ti(lll), реже Сг(Н). Хранить растворы этих реагентов и работать с ними следует в инертной атмосфере, исключающей контакт с воздухом. Это затрудняет работу с ними по этой причине их используют при выполнении серийных определений и значительно реже при выполнении отдельных определений. Система Ti(IV) — Ti(UI), потенциал которой сильно зависит от pH, приобрела особое значение в органическом анализе определение нитрогрупп, анализ красителей). Кроме того, существуют многие менее употребительные новые титриметрические методы. В качестве реагентов титранта были предложены [40]  [c.82]


    Напоминаем, что во всех титриметрических методах анализа используют нормальную концентрацию растворов, см. разд. 7.1.) [c.164]

    Рациональные величины в титриметрическом методе анализа могут быть использованы во всех вариантах этого метода, обусловленных способами индикации конечной точки титрования. Рациональные величины сохраняют постоянство, если титр раствора не изменяется. Если титр используемого для титрования раствора изменился, то следует произвести расчет новых рациональных величин. [c.101]

    В титриметрическом анализе используют реакции различного типа — кислотно-основного взаимодействия, комплексообразования и т. д., удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании или по названию титранта (например, в аргентометрических методах титрантом является раствор AgNOa, в перманганатометрических — раствор КМПО4 и т. д.). По способу фиксирования точки эквивалентности выделяют методы титрования с цветными индикаторами, методы потенциометрического титрования, кондуктометрического, фотометрического и т. д. При классификации по типу основной реакции, протекающей при титровании, обычно выделяют следующие методы титриметрического анализа. [c.188]

    В потенциометрическом титрования могут быть использованы реакции нейтрализации, осаждения, комплексообразования, окисления — восстановления и применены пo rги все стандартные растворы, которые известны для визуальных титриметрических методов анализа. [c.36]

    ВАНАДАТОМЕТРИЯ - титриметрический метод количественного анализа, основанный на применении раствора пятивалентного ванадия как окислителя или раствора трехвалентного ванадия как восстановителя. В. используется для непрямого определения многих элементов, индикатором при этом служит фенилантраннловая кислота. [c.52]

    Гладышевой [77] были исследованы методы определения микрограммовых количеств ртути в продуктах свинцового производства, наиболее часто применяемые в настоящее время в заводских и рудничных лабораториях гравиметрический, основанный на взвешивании амальгамы золота титриметрический роданидный и колориметрические по Полежаеву [247, 248] и дитизоновый. Метод определения после отгонки на золотую крышку [363] и роданидный [288] метод применимы лишь для содержаний ртути порядка сотых долей процента и выше. Колориметрический метод Полежаева позволяет определять тысячные доли процента ртути в твердых материалах, однако использовать его для анализа продуктов свинцового производства нельзя, так как содержащийся в пробах таллий возгоняется вместе с ртутью и придает окраске медно-ртутного иодидного комплекса оттенок, отличный от окраски стандартного раствора. На основании проведенных исследований для определения ртути в продуктах свинцового производства (руды, концентраты, огарки, пыли и другие материалы) рекомендуется отгонка ртути на золотую крышку с последующим титрованием раствором дитизона [77]. [c.153]


    Кулонометрия включает группу методов, основанных на измерении количества электричества (в кулонах), необходимого для электрохимического превращения определяемого вещества. Подобно гравиметрическому методу, кулонометрия обладает тем преимуществом перед другими методами анализа, что коэффициент пропорциональности между измеряемым сигналом и концентрацией можно выразить, используя известные физические константы, и поэтому в кулонометрии обычно не требуется проводить калибровку прибора или стандартизацию растворов. Часто кулоно.мет-рические методы дают более точные результаты, чем гравиметрические или титриметрические обычно они более экспрессны и удобны. Кроме того, кулонометрические методы легко автоматизировать [1—3]. [c.34]

    Важнейшими критериями кондуктометрических методов титрования, использующих реакции окисления — восстановления, так же как и при других титриметрических методах анализа, являются величины окислительно-восстановительных потенциалов взаимодей-" ствующих вешеств. При помощи обычных расчетов может быть установлено, насколько полно протекает реакция. Для количественного прохождения реакций создают определенные условия, так как потенциалы окислительно-восстановительных систем зависят от температуры, концентрации раствора, pH среды, комплексообразования и т. д. Повышение температуры с целью изменения величины окислительно-восстановительного потенциала систем не использовано в практике кондуктометрического титрования. [c.261]

    Титриметрический анализ основан на точном измерении количества реактива, израсходованного на реакцию с определяемым веществом. Еще недавно этот вид анализа обычно называли объемным в связи с тем, что наиболее распространенным в практике способом измерения количества реактива являлось измерение объема раствора, израсходованного на реакцию. Однако в последнее время повсеместно прививается название титриметрический анализ, так как наряду с измерением объемов широко используются другие методы (взвешивание, электрохимическое превращение и др.). [c.178]

    Для анализа неорганических веществ используют гравиметрию, титриметрические методы (см. гл. 7), а также физико-химические и физические методы анализа. Чтобы выполнить анализ, составляют рабочую пропись — методику, представляющую собой подробное описание всех условий и операций, которые обеспечивают регламентированные характеристики результатов анализа. В методику анализа входят отбор средней пробы взятие навески (или измерение объема раствора) подготовка пробы к анализу (переведение в требуемое агрегатное состояние, отделение мешающих компонентов или их маскировка, создание нужных условий проведения реакции) способ проведения реакции, включая необходимые реактивы, вспомогательные вещества, посуду и аппаратуру, порядок измерений, а также способ расчета и оценки результатов измерений. [c.204]

    При титровании сильных оснований, таких как гидроокиси щелочных металлов, в настоящее время трудностей не возникает. О получении удовлетворительных результатов анализа растворов щелочей сообщали многие исследователи, использующие ручные или автоматические титриметрические методы. Определение слабых оснований, таких как карбонат натрия, гидрокарбонат натрия, и таких соединений, как тринатрийфос-фат, сейчас не вызывает затруднений в том случае, когда они содержатся в растворе каждый отдельно. Однако анализ растворов, содержащих смесь оснований, представляет определенные трудности. Этот вопрос представляет интерес для многих областей промышленности, особенно для мыловаренной, где технологические продукты содержат смеси гидроокиси натрия, карбоната и гидрокарбоната натрия вместе с фосфатом натрия и такими слабоосновными материалами, как силикат натрия. [c.58]

    Гравиметрический (весовой) анализ характеризуется тем, что конечный результат реакции определяют путем взвешивания на аналитических весах. Титриметрический (объемный) анализ основан на измерении объемов растворов реагирующих веществ. Технический анализ занимается исследованием состава технических (исходных и конечных) продуктов производства он применяется в заводских лабораториях. В техническом анализе используются гравиметрические, титриметрические, а также физико-химические методы анализа. [c.91]

    Эти данные можно использовать для вычисления относительных количеств различных соединений, существующих в растворе в данном интервале экспериментальных условий (ср. гл. 11). Такие расчеты могут значительно облегчить выбор соответствующих индикаторов для титриметрических методов помочь в подборе условий эксперимента, при которых мешающие ионы необходимым образом маскируются облегчить выбор условий экстракции незаряженных соединений и т. д. При выполнении этих расчетов желательно сначала рассмотреть все возможные взаимодействия между различными ионами в растворе попытки пренебречь малозначительными компонентами для упрощения расчетов следует проводить только после анализа всей картины. [c.288]


    Описан [14] метод определения в сложных смесях ионов С1 , СЮ, СЮг, СЮз, СЮ4 и СЮг. Часть метода, касающаяся хлорита, основана на фотометрическом определении иода (в виде три-иодид-иона), образующегося при добавлении образца к подкисленному раствору К1. Метод включает в себя в дополнение к фотометрическому определению и титриметрическое. Для анализа смеси СЮг, НСЮг, СЮг, СЮз и СЬ использовали поглощение хлорита при 250 нм. Как и в предыдущем методе, для анализа применяют и титриметрию [15]. [c.329]

    Титриметрические методы, основанные на кислотно-основных реакциях, включают прямое или косвенное титрование ионов водорода или гидроксила. Кислотно-основные методы широко используют в химическом анализе. В большинстве случаев растворителем служит вода следует принимать во внимание, что кислотный или основной характер растворенного вещества отчасти определяется природой растворителя, и поэтому замена воды иным растворителем позволяет проводить титрование в тех случаях, когда в водных растворах это невозможно. Титрование в неводных средах обсуждается в гл. 12. [c.264]

    В титриметрическом методе анализа реакции окисления — восстановления используют для количественного определения многих веществ. Так, ионы Ре окисляются перманганатом до ионов Ре +, что дает возможность определить их содержание в растворе, В качестве окислителей применяют кроме перманганата калия также бихромат калия, ванадат натрия, бромат калия и ряд других веществ. Известны и методы титрования восстановителями, например растворами 8пС12, Т СЬ, СгСЬ и др. [c.371]

    Ванадатомвтрия — титриметрический метод анализа, в котором в качестве титранта используется раствор ванадата аммония. Процесс в кислой среде соответствует полуреакции [c.58]

    Иодхлорметрия — титриметрический метод анализа, где в качестве титранта используется раствор иодмонохлорида 1С1, который в окисли-тельно-восстановительной реакции восстанавливается до Г или до 2- [c.130]

    Широко используют для косвенного определения ЗО -иона (подробно см. табл. 5.9) РЬ-селективный электрод в нейтральный водный или водно-спиртовой раствор, содержащий вводят раствор соли свинца и одним из методов расчета находят ТЭ [7]. Титриметрические. методы анализа, основанные на реакции образования РЬ504, применяют для определения сульфатов как в стационарных условиях, так и в системах проточно-инжекционного анализа. [c.17]

    Для определения мышьяка в растворе был предложен гра-шстрический метод [7], основанный на получении осадка Храниларсената, который при нагревании превращали в диок-ид урана и затем взвешивали. Чаще при анализе мышьяка используют титриметрические методы, например титрование ионами свинца после окисления до арсената [6]. Можно при этом использовать в качестве индикатора пиридил-2-азо-4-ре-зорцин или 7-(4-сульфо-1-нафтилазо)-8-оксихинолин-5-сульфо-кислоту. Фосфор мешает титрованию. При титровании нейтрального поглотительного раствора ионами свинца кислотность раствора увеличивается  [c.427]

    Кулонометрическому титрованию присуща большая чувствительность, чем всем другим известным титриметрическим методам. Кроме того, кулонометрическое титрование обладает рядом несомненно ценных преимуществ исключается необходимость подготовки стандартных растворов титрантов могут быть использованы такие реагенты, которые невозможно приготовить в виде стандартных растворов, или образующие малоустойчивые растворы С1г, Вгг, А ++, Си+, Т1++ , 8п+- и др.) анализируемые растворы в процессе электротитрования не разбавляются чистота вспомогательных реагентов имеет небольшое значение, так как предэлектролизом можно освободиться от мешающих примесей имеется возможность в одном и том же растворе вспомогательного реагента многократно повторять анализ с новыми порциями [c.207]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Анализ процесса осадительного титрования и выбор индикаторов проводят, как и в других титриметрических методах, используя кривые титрования, которые строят в координатах отрицательный логарифм равновесной концентрации титруемого вещества или титранта - объем раствора титранта V или фактор (степень) оттитроваппости р, % (рХ=/(У) или рХ=/(р/). [c.5]

    В качестве титруюш его раствора при аналогичном определении может быть использован метапериодат [1176]. В работе [59] проведено титриметрическое определение ртути нри осаждении ее перйодатом калия в виде Hg5(100)2, растворении осадка в кислоте и иодометрическим титровании. При определении от 0,2 до 0,02 г Hg(II) ошибка равна +0,2%. Для анализа соединений Hg(II) можно также использовать данный метод, предварительно восстановив Hg(II) до Hg(I). [c.90]

    Примечание. M. И. т = 6-8 Ч. Анализ жидкой фазы F - ториметрическим титрованием с индикатором метилтимоловым синнм, Na - гравиметрически взвешиванием осадка в виде НагЗО SO - титриметрическим методом с индикатором нитхромазо, кислотность - титрованием раствором NaOH. Анализ твердой фазы кристаллооптич. ж рентгенострукт. (использовали фторопластовую или полиэтиленовую посуду). [c.303]

    В основном же для проведения ускоренных анализов используют другие методы, которые являются, как правило, менее точными, чем маркировочные, но достаточно быстрыми. Для ускоренных анализов применяют из химических методов титриметрические, из физико-химических, например фотометрические, ионометрические и др. Из физических методов наиболее пригодными являются методы, с помощью которых легко осуществим Автоматический контроль. Например, в последние годы на предприятиях цветной металлургии применяют рентгеносиект-ральные методы анализа, позволяющие контролировать содержание элементов непосредственно в потоке раствора или пульпы (квантометры Поток КРФ-13). [c.24]

    Метод основан на измерении объема стандартного раствора— титранта, необходимого для проведения реакции с определенным компонентом. Конечную точку титрирования фиксируют по изменению окраски раствора или специального индикатора визуально или с помощью какого-либо инструментального метода применительно к газовому анализу. Титриметрический метод предполагает выделение в конденсированную фазу определяемого компонента или какого-либо его соединения, в которое он предварительно превращается. Для этого используются как химические реакции, так и процессы химической абсорбции. В аналитическом процессе используются различные приемы титрования — прямое и обратное, метод замещения и др, [c.919]

    В Институте химии и химической технологии АН ЛитССР (Вильнюс) проведены исследования новых титриметрических, в основном потенциометрических, методов анализа. Для ускорения медленно протекающих редокс-реакций успешно использованы катализаторы— соединения осмия и рутения. Предложены методы определения ряда окислителей и восстановителей, а также ускоренные и усоверщенствованные методы определения некоторых восстановителей и других компонентов в растворах, применяемых для получения металлических покрытий химическим путем. Разработаны редокс-методы определения благородных металлов. [c.211]

    Важным моментом титриметрического определения хрома (VI) является установление титра раствора бихромата калия, применяемого в анализе. Это соединение можно получить высокочистым. После высушивания К2СГ2О7 при 150—180 °С его можно использовать в качестве стандарта. Для этого необходима точная навеска. Однако бихромат калия не отвечает требованиям, предъявляемым к стандартам, и для высокоточных анализов необходимо установить титр раствора. Наиболее подходящим методом установления титра раствора бихромата калия является метод кулонометрии при постоянном токе, а также приведенные ниже титриметрические методы. [c.54]

    Органические реактивы в неорганическом анализе применяются для разделения смеси элементов, определения отдельных элементов, для титриметрического анализа, приготовления эталонов, в качестве стабилизаторов эмульсий и т. д. Исключительно большее значение имеют специфические реактивы на катионы и анионы. К ним относятся реактивы, образующие осадки, которые можно определить гравиметрическим методом или нефе-лометрически (по степени помутнения раствора), и реактивы, образующие окрашенные осадки или растворы, что позволяет применить колориметрический метод определения, отличающийся большой чувствительностью. Многие из современных органических реактивов используются в электрохимическом, фотометрическом и других методах анализа. [c.48]

    Предложено более десятка методов титриметрического определения палладия. Многие из них основаны на образовании нерастворимых соединений палладия. В таких реакциях для установления стехиометрической конечной точки используют некоторые физические методы. Другие методы основаны на обратном титровании избытка стандартного раствора комплексующего реагента. Ни один из титриметрических методов нельзя применять без учета многих факторов даже при анализе простых смесей платиновых металлов. Лищь немногие из этих методов применимы для массовых анализов простых сплавов, качественный и количественный состав которых мало изменяется. [c.101]

    Тем не менее постепенно объемный анализ благодаря легкости и простоте овладения его методами стал все чаще использоваться в промышленности и в исследовательских лабораториях. Для титрования использовались растворы разнообразных соединений, таких, как нитрат серебра, нитрат свинца, мышьяковистая кислота, нитрат ртути(1), нитрат бария, иод. Иодометрию особенно часто использовал Р. Бунзен (59], а Ф. Маргеритт с 1846 г для определения железа стал применять растворы перманганата калия [60]. Но особенно широко методы объемного анализа стали применяться с середины XIX в. В это время титриметрические методы стали особенно необходимы для быстро развивающейся промышленности. Тогда же появились более разнообразные растворы для титрования, и в конце концов у химиков исчезло предубеждение против использования объемных методов анализа. Признанию способствовали также две книги, опубликованные в 1850 и 1855 гг. К. Шварцем и Ф. Мором. [c.126]

    При титровании следовых количеств хлорид-ионов возможна ошибка за счет реакции НС1 с СО,. Такую ошибку можно корректировать введением поправки [720]. Ошибку титрования увеличивает скоагулировавшийся осадок. Поэтому для предотвращения коагуляции к концентрированным растворам хлоридов лития,, натрия, калия, магния, кальция добавляют 5—10 мл 0,1%-ного раствора агар-агара. В качестве титранта используют 0,01— 0,1 N AgNOg (чаще всего 0,05А ). Метод Мора применяют в основном для анализа вод [633, 771]. В настоящее время он все больше вытесняется другими титриметрическими методами, исключающими использование серебра. Ограничивает также применимость этого метода необходимость проведения анализа в нейтральной срвде, что исключает присутствие в ана.иизируемых объектах тяжелых металлов. Поэтому гораздо чаще применяют метод Фоль-гарда, позволяющий проводить титрование в кислой среде. [c.36]

    Большой интерес вызвало применение люминесцентных индикаторов в титриметрических методах. Люминесцентные индикаторы (а-нафтиламин, акридин и др.) изменяют цвет или интенсивность люминесценции в зависимости от свойств участников реакции, pH раствора или присутствия окислителя. Используя в качестве люминесцентного индикатора, например, морин, можно с погрешностью 5...10% титриметрически определять алюминий, галлий, цирконий и другие элементы при содержании 1...10 мкг. Медь можно титровать флуорексоном в присутствии никеля, кобальта, железа, марганца и некоторых других элементов в растворах, содержащих 0,01...0,1 мкг Си/мл. Применение люминесцентных индикаторов позволило решить ряд сложных аналитических задач, связанных, в частности, с анализом мутных и окрашенных сред (фруктовые соки, вина и другие напитки). [c.112]

    Часто химики используют эквивалентную массу (или милли-эквивалентную массу) как основу расчетов в титриметрическом методе соответствующей единицей концентрации является нормальность. Способ выражения этих единиц зависит от типа реакции, лежащей в основе анализа, т. е. от того, будет ли это реакция кислотно-основная, окислительно-восстановительная, осаждения или комплексообразования. Более того, необходимо точно знать поведение вещества в химической реакции, чтобы однозначно определить его эквивалентную массу. Если вещество может вступать в более чем одну реакцию, оно будет иметь несколько эквивалентных или миллиэквивалентных масс. Поэтому эквивалентную а мил-лиэквивалентную массу вещества всегда находят, исходя из конкретной химической реакции. Если тип реакции не установлен, эквивалентную массу вычислить нельзя. При отсутствии этой информации и концентрацию раствора нельзя выразить в единицах нормальности. [c.176]

    В 1913 г. Френч [560] описал новые титриметрические методы, рекомендованные для анализа монет. Один из методов заключался в восстановлении золота в сернокислом растворе солью Мора и титровании избытка восстановителя перманганатом калия. Цобарь [561] применил этот метод для анализа сплавов золота с медью. Солянокислый раствор, свободный от окислов азота, нейтрализовали гидрокарбонатом натрия до появления аморфного осадка. ЗатС М слегка подкисляли серной кислотой, добавляли железо (И) и избыток его титровали перманганатом калия. Этот метод остается одним из лучших титриметрических методов определения золота. Он включен в новый учебник аналитической химии [304]. Прямое титрование железом (И) может быть осуществлено потенциометрически. Мюллер и Вайсброд [562] определяли этим методом золото в солянокислых и азотнокислых растворах. Для превращения всего золота в золото(III) использовали хлор. В этом случае восстановлению Au(III) отвечал только второй скачок потенциала. В присутствии азотной кислоты этот скачок потенциала не очень резок, но при добавлении этанола и сульфата калия он становится более четким. Платина и палладий мешают. [c.129]

    Большой интерес вызвало применение люминесцентных индикаторов в титриметрических методах. Люминесцентные индикаторы изменяют цвет или интенсивность люминесценции в зависимости от партнера реакции, pH раствора или присутствия окислителя (а-нафтиламин, акридин и др.). Используя в качестве люминесцентного индикатора, например, морин можно с погрешностью 5— 10% титриметрически определять алюминий, галлий, цирконий и другие элементы при содержании 1—10 мкг. Медь можно титровать флуорексоном в присутствии никеля, кобальта, железа, марганца и некоторых других элементов в растворах, содержащих 0,01—0,1 мкг Си/мл. В точке эквивалентности появляется ярко-зеленая люминесценция флуорексона, так как флуорексонат меди, образующийся при титровании, не люминесцирует. Такого рода титриметрические методики разработаны для многих элементов. Применение люминесцентных индикаторов позволило решить ряд сложных аналитических задач, связанных, в частности, с анализом мутных и окрашенных сред (фруктовые соки, вина и т. д.). [c.75]


Смотреть страницы где упоминается термин Растворы, используемые в титриметрических методах анализа: [c.231]    [c.393]    [c.98]    [c.250]    [c.687]    [c.144]    [c.217]    [c.307]    [c.313]    [c.84]   
Смотреть главы в:

Краткий химический справочник -> Растворы, используемые в титриметрических методах анализа

Краткий химический справочник -> Растворы, используемые в титриметрических методах анализа




ПОИСК





Смотрите так же термины и статьи:

Растворы анализ



© 2025 chem21.info Реклама на сайте