Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сплав железа сплавы никеля с хромом

    Одной из важнейших причин, ограничивающих применение высоких и сверхвысоких температур в химической технике, яв-ляется трудность подбора конструктивных материалов, устойчивых при этих температурах и одновременно к действию различных химических реагентов. Обычные углеродистые стали легко деформируются уже при температурах выше 00 °С, а пластмассы даже при температурах ниже 250 °С. Жаропрочные стали устойчивы при температурах до 700°С. Специальные сплавы железа с никелем, хромом, молибденом, кобальтом, титаном и другими тугоплавкими металлами, применяемые в химической промышленности, устойчивы до 800—900 °С. Для осуществления процессов при температурах выше 900—1000 °С в металлургии, в стекловарении, в производстве цемента, карбидов и многих других применяют неметаллические огнеупорные материалы (см. гл. XV). Наиболее распространенные огнеупоры (шамот, динас и другие) применимы для футеровки аппаратов, кладки печей, топок и т. п. при температурах не более 1400—1600 °С. Применение огнеупоров ограничено также их коррозией при действии расплавленных м-е-таллов и шлаков. При температурах до 2000 °С в основной среде используются магнезитовые огнеупоры. Графитовые изделия стойки в восстановительной среде при температурах до 3000 °С. Отсутствие доступных конструктивных материалов, стойких в различных агрессивных средах при температурах выше 1600—2000°С, является основным препятствием для осуществления многих эндотермических высокотемпературных процессов. [c.146]


    Системы железо—никель и железо—хром—никель подробно рассмотрены в работе [56]. Сплавы железа с никелем образуют в основном у-твердые растворы. Никель сильно снижает критические точки, фиксирующие превращение у- в а-железо, причем точки на диаграмме состояния, соответствующие превращению а- в у-железо, с увеличением содержания никеля смещаются вверх, а точки, соответствующие превращению у- в а-железо, смещаются вниз. Превращения у —> а при охлаждении и а у при нагреве никелевых и хромоникелевых сталей происходят с большим гистерезисом. [c.158]

    В зоне прилива и на малых глубинах поверхность никелевых сплавов подвергается биологическому обрастанию, например усоногими раками и моллюсками. Это затрудняет поддержание пассивности никеля и сплавов нпкель — медь, никель — хром — железо и никель — хром. Однако сплавы системы нпкель — хром — молибден сохраняют пассивность в зоне прилива и при обрастании. [c.79]

    СПЛАВЫ НИКЕЛЬ-ХРОМ И НИКЕЛЬ-ЖЕЛЕЗО-ХРОМ, ЛЕГИРОВАННЫЕ АЛЮМИНИЕМ [c.62]

    Исследования, проделанные позднее на железе 2, 3], а также на других металлах — меди [4—6], никеле [7], серебре [8] и на сплавах никель — хром и железо — хром [9, 10], позволили установить чрезвычайно общий характер этого явления. На рис. 3 показаны зерна окисла СигО на меди, а на рис. 4 — зерна окиси хрома на сплаве никель — хром. На этих рисунках хорошо видно ярко выраженное влияние ориентации нижележащего металла на структуру окисла. Недавно было замечено [11], что в реакциях сульфирования проявляются такие же свойства на рис. 5 видны зерна сульфида СигЗ, полученного на поверхности меди, на которую действовали водородом, содержащим следы сероводорода. Многие признаки указывают на то, что некоторые реакции гидрирования и хлорирования могут иметь те же особенности. [c.294]

    Отсюда видно, что коррозия сплавов железа и никеля, содержащих, например хром, должна приводить к получению на их поверхности защитных покрытий. [c.252]

    До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами. [c.617]

    Сплавы железо — никель — кобальт —хром с разным процентным содержанием этих элементов применяют в основном в крупном промышленном производстве электровакуумных приборов. В практике стеклодувных работ довольно редко приходится встречаться с вводами из таких сплавов, так как их с успехом можно заменить коваром. Спаивают такие сплавы с легкоплавкими стеклами С87-1, 23 и др. Спаи получаются вакуумноплотные, в холодном состоянии они могут иметь цвет от металлического до серого и серо-зеленого. [c.142]


    Казалось, что по анодному поведению в растворах хлоридов сплавы никель — хром, железо — хром должны сильно различаться, так как известно, что никель в растворах хлоридов более стоек, чем железо. Но из сравнения кривых 5 (рис. 144) и 3 (рис. 146) видно, что при малых плотностях тока различие между ними очень небольшое, т. е. железо и никель в бинарных сплавах с хромом обладают близкими свойствами. [c.301]

    Электрохимическое поведение пассивных сплавов железа с хромом и никелем коррелирует с поведением составляющих их металлов. Так, для хромистых сталей установлено снижение количества электричества, необходимого для пассивации, с ростом содержания в них хрома до некоторой критической величины (12-14%) [70,114], Аналогичные результаты были получены для сплавов же-лезо-никель, критическое содержание никеля в которых соответствует 30% [ 114 ]. Эти результаты согласуются с заключением о более тонких пассивирующих слоях на хроме и никеле по сравнению с железом. [c.26]

    При экспозиции на среднем уровне прилива сплавы никель — хром и никель —хром — железо склонны к питтингу ц другим формам местной коррозии [40]. Как и в случае нержавеющих сталей, коррозии подвергаются участки поверхности металла под приросшими морскими организмами и в щелях. Однако в целом названные сплавы проявляют в зоне прилива несколько большую стойкость к коррозии, чем аустенитные нержавеющие стали. [c.81]

    Различие в анодном поведении сплавов никель — хром и железо — хром при повышенных плотностях тока можно объяснить тем, что образую- [c.302]

    В качестве проводников используются различные металлы и их сплавы. Так, в термопарах, служащих для измерения температур до 600° С, одним проводником служит хромель (сплав никеля, хрома и железа), а другим копель (сплав меди и никеля). Для температур до 700° С применяются железо-копелевые, до 1000° С — хромель-алюмелевые (алюмель — сплав никеля, кремния, алюминия, железа и марганца), до 1300° С и кратковременно до 1600° С — [c.412]

    Пассивации могут подвергаться не только химически однородные металлы, но и их сплавы. В связи с этим особое значение приобретают сплавы железа с никелем и хромом, на которых уже под воздействием воздуха быстро образуется прочно связанный непроницаемый окисный слой. Такие сплавы в дальнейшем не окисляются под воздействием влаги, не растворяются в кислотах и поэтому называются нержавеющими, или кислотоустойчивыми, сплавами. [c.196]

    Особое место занимают металлические проводники высокого сопротивления с малой окисляемостью, используемые в качестве нагревательного элемента в бытовых нагревательных приборах. К таким проводникам относятся металлические сплавы— фехраль (сплав железа, хрома и алюминия), нихром (сплав никеля, хрома и железа). [c.66]

    Лит. Елютин В. П. [и др.]. Произ,-водство ферросплавов. М., 1957 Б д н е -рал Ф. Электрометаллургия стали и ферросплавов. М., 1963. В. П. Зайко. ФЕРРОНИКЕЛЬ — сплав железа с никелем. Используется со второй половины 19 в. Содержит, кроме никеля, кобальт, кремний, хром и др. примеси (табл.). Ф. получают в основном восстановительной плавкой окисленных никелевых руд, состоящих из окислов кремния, железа, магния, алюминия, хрома и содержащих никель (1—3%) и кобальт (до 0,2%). Различают Ф. богатый (30— 40% N1), средний (10—20% N1) и [c.643]

    Главная масса никеля идет на производство различных сплавов с железом, медью, цинком и другими металлами. Присадка никеля к стали повышает ее вязкость и стойкость против коррозии. Сплавы на основе никеля можно разделить на жаропрочные, магнитные и сплавы с особыми свойствами. Жаропрочные сплавы никеля используются в современных турбинах и реактивных двигателях, где температура достигает 850—900 °С таких температур сплавы на основе железа не выдерживают. К важнейшим жаропрочным сплавам никеля относятся нимоник, инконель, хастеллой. В состав этнх сплавов входит свыше 60% никеля, 15—20% хрома и другие металлы. Производятся также металлоксрамические жаропрочные сплавы, содержащие никель в качестве связующего металла. Эти снлавы выдерживают нагревание до 1100 °С. Широко применяются для изготовления элементов электронагревательных устройств сплавы типа нихром а, простейший из которых содержит 80% никеля и 20% хрома. [c.694]

    Предлагались и другие гипотезы для объяснения межкристаллитной коррозии, однако механизм, связанный с обеднением хромом, более всего отвечает экспериментальньпл данным, и, по-видимому, соответствует истине. Например, в карбидах, выделившихся на границах зерен после сенсибилизации нержавеющих сталей, как и ожидалось, обнаружено Повышенное содержание хрома. В продуктах коррозии на границе зерна, полученных в условиях, когда исключалось разрушение карбидов, содержание хрома оказалось ниже, чем в целом в сплаве. Так, Шафмейстер[17] подвергал воздействию холодных концентрированных растворов серной кислоты нержавеющую сенсибилизированную сталь, содержащую 18 % Сг, 8,8 % N1, 0,22 % С. После 10-дневных испытаний в продуктах коррозии сплава на границе зерен он обнаружил только 8,7 % Сг. Содержание N1 и Ре в продуктах коррозии составляло, соответственно, 8,4 и 83,0 %. А это означает, что по границам зерен не происходит обеднения сплава никелем, но увеличивается содержание железа. Исследования сенсибилизированных нержавеющих сталей с помощью сканирующего микроскопа показали обеднение границ зерен хромом и [c.306]


    Технология изготовления. Конструкция теплообменника зависит от требований технологии производства, в частности от технологии соединения труб с трубными досками. Наиболее перспективными, по-видимому, являются гелиеводуговая сварка и высокотемпературная пайка тугоплавким припоем — сплавом железа, хрома, никеля, кремния и бора с точкой плавления около 1100° С. Для осуществления пайки твердым припоем необходима атмосфера водорода при отсутствии влаги (см. гл. 2). В некоторых теплообменниках применена сварка, в других используется пайка, некоторые теплообменники были сначала сварены, а затем пропаяны. Для выявления лучшей технологии были проведены испытания на длительную прочность соединений. Обнаружилось, что повреждения были одинаковыми как в случае сварки, так и в случае пайки — в обоих вариантах имели место случайные свищи. Одной из наиболее существенных конструктивных проблем является вопрос концентрации напряжений в основании сварного шва в трубной доске. На рис. 2.5 показана фотография микрошлифа такого шва, на которой ясно видны места сильной концентрации напряжений на конце трещины, упирающейся в сварочный шов. Хотя влияние такой концентрации напряжений можно уменьшить путем развальцовки трубы в трубной доске, последнюю операцию не всегда легко осуществить при малом диаметре труб. Возникающие в стенке трубы при вальцовке остаточные напряжетшя сжатия имеют тенденцию к релаксации при высоких температурах, особенно в условиях переменных температурных режимов, связанных с резкими изменениями температуры жидкости, текущей в трубах. Следовательно, имеются весьма веские доводы в пользу припаивания труб к трубной доске твердым припоем. При последнем способе получается хорошее со всех точек зрения металлическое сцепление трубы с трубной доской. Было выявлено, что если трубы свариваются, а затем еще и пропаиваются, то при этом достигается высокая монолитность конструкции. Действительно, более 7000 сваренных, а затем пропаянных соединений труб с трубной доской были подвергнуты длительным испытаниям, при этом не обнаружилось ни одного свища [14]. [c.271]

    Сг (нихром) или Инконель 600, значительно упрочняет пассивную пленку, но все же не в такой степени, чтобы предотвратить щелевую н питтинговую коррозию в морской воде. Поэтому сплавы никель—хром и никель—хром—железо можно использовать в условиях погружения только в тех случаях, когда приходится иметь дело с быстрым потоком воды, скорость которого достаточна для поддержания пассивности, или же когда применяется катодная защита. В целом названные сплавы более стойки к местной коррозии, чем никель. При определенных условиях для развития [c.85]

    Нагревательные элементы печей выполняют главным образом из проволоки или ленты нихрома—сплава никеля, хрома и железа (20% Сг, 30—80% N1 и 0,5—50% Ре) и хромо-железо-алюминиевых сплавов. Размеры спиралей выбирают с учетом устранения взаимного лучепогло-щения (взаимоэкранирования) витков (что может ухудшить теплопередачу) и обеспечения механической прочности проводников. Принимают следующие соотношения между диаметром проволоки и диаметром и шагом витков спирали для нихромовой проволоки диаметром с(=3—7мм (рис. 267) шаг Ь=2с1 и диаметр спирали Л=(6-4-8) для проволоки таких же размеров, изготовленной изхромо-железо-алюминиевых сплавов. [c.380]

    Для температур от 550 до 800° в окислительной атмосфере пригодны сплавы железа с никелем и хромом. Чем выше температура, тем меньше должно быть в сплаве содержание железа. Это не относится к нейтральным или восстановительным атмосферам. В восстановительной атмосфере при температуре до 1065° может длительно работать сплав, состоящий из 357о никеля, 20% хрома и 45% железа. В воздухе или в другой окислительной атмосфере при такой же высокой температуре наиболее [c.148]

    Наряду с активирующим роданид оказывает и ингибирующее действие [48]. РТнгибирующее действие обычно проявляется при совместном введении ионов СМ8 и других добавок [49]. Сплавы на основе железа, содержащие никель, хром, молибден, в растворах роданидов подвергаются питтинговой и межкрн-сталлитной коррозии. [c.54]

    По всей вероятности, большее сопротивление ползучести крупнозернистой углеродистой стали объясняется более высокой температурой нормализации, а не укрупнением зерна. Высокая температура растворения может быть также предпочтительней и для аустенитных жаропрочных материалов. Например, в стандарте ASME 1325 для сплава никель—хром — железо наибольшие допускаемые напряжения ползучести наблюдаются в случае более высокой температуры аустенизации. [c.208]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    При выборе покрытия для катодного металла который предполагается законтактировать с магниевым сплавом, предпочтение следует отдать цинку. При контактировании алюминиевых сплавов и трехслойного покрытия по железу с оцинкованной сталью последняя оказывается анодом. По степени увеличения коррозии оцинкованной стали на первом месте стоит трехслойное покрытие по железу (железо-медь-никель-хром), на втором — анодированный сплав Д16 и на последнем — сплав АМц. [c.120]

    Спаи этого типа изготавливаются преимущественно с платиной, а также со сплавами железо — никель, железо — хром и железо — никель— хро м (см. разд. 2, 1-3). В табл. 2-32 приведены сведения о различных стеклах, пригодных для изготовления спаев с указанными выше, а также и с др угими металлами. Более подробные сведения, касающиеся согласованности теплового ра сширения различных компонентов металлостеклянных спаев, приведены в табл. 2-29. В табл. 2-33 приведены данные о соста ве и свойствах металлов и сплавов, используемых при изготовлении металлостеклянных спаев. [c.110]

    Сталь обыкновенного качества — один из наиболее массовых продуктов черной металлургии. Эта сталь, как известко, представляет собой сплав железа с относительно небольшим количеством углерода, кремния, марганца, фосфора, серы и, если выплавляется как раскисленный (спокойный) металл, может содержать алюминий. В отдельных случаях в состав такой стали могут входить в небольших количествах хром, медь, никель и другие элементы. По принятой классификации ее относят к углеродистой стали. [c.53]

    Нагревательные элементы печей выполняют, главным образом, из пр01Волоки или ленты, изготовленных из нихромов — сплавов никеля, хрома и железа (20% Сг, 30—80% N1 и 0,5—50% Ре) и хроможелезоалюминиевых сплавов. Для того чтобы не ухудшать теплопередачи вследствие взаимного лучепоглощения (взаимоэкранирова-ния) витков и не снижать механической прочности проводников, принимают следующие соотношения [c.342]


Смотреть страницы где упоминается термин сплав железа сплавы никеля с хромом: [c.743]    [c.627]    [c.539]    [c.25]    [c.208]    [c.133]    [c.85]    [c.793]    [c.303]    [c.99]    [c.9]    [c.15]    [c.303]    [c.258]    [c.371]    [c.129]   
Коррозия металлов Книга 1,2 (1952) -- [ c.287 ]

Коррозия металлов Книга 2 (1952) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Водяной газ, действие на сплавы никеля с хромом и железом

Груздева, А. С. Адамова. Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий и цирконий — мель — олово

Груздева, Т. Н. Загорская, И. И. Раевский. Влияние малых добавок меди, никеля и хрома на коррозионные и механические свойства сплавов системы цирконий — железо — ниобий

Дымовые газы, действие на сплавы никеля с хромом и железом на сталь

Железо сплавы

Колотыркин, Г.М. Флорианович Взаимосвязь коррозионно-электрохимических свойств железа, хрома и никеля и их двойных и тройных сплавов

Надсернокалиевая соль, влияние коррозию сплавов никеля с хромом и железом

Покрытие сплавами железа с никелем и хромом

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден

Сплав никель хром железо

Сплавы железа с хромом, железа с хромом и никелем и другие жаростойкие стали

Сплавы никель-хром и никель-железо-хром, легированные алюминием

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Сплавы никеля с молибденом и никеля с молибденом и железом (хромом)

Сплавы хрома

ниобий палладий платину и ее сплавы свинец меди с оловом сплавы никеля с хромом и железом

сплавы никеля его сплавы на железо



© 2024 chem21.info Реклама на сайте