Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы никеля с молибденом и никеля с молибденом и железом (хромом)

    С помощью электролиза можно получать покрытия в виде сплавов, содержащих такие металлы, которые не выделяются на катоде в чистом виде или выделяются с очень малыми выходами по току (например, вольфрам, молибден, рений и др.). Были разработаны условия электролитического получения сплавов вольфрам-железо, вольфрам-никель, вольфрам-кобальт, вольфрам-хром, молибден-никель и др. [c.431]


    Из технических сплавов известны сплавы титана с железом, медью, алюминием, хромом, марганцем, кобальтом, никелем, молибденом, вольфрамом, ванадием и др. [c.86]

    В зоне прилива и на малых глубинах поверхность никелевых сплавов подвергается биологическому обрастанию, например усоногими раками и моллюсками. Это затрудняет поддержание пассивности никеля и сплавов нпкель — медь, никель — хром — железо и никель — хром. Однако сплавы системы нпкель — хром — молибден сохраняют пассивность в зоне прилива и при обрастании. [c.79]

    Легирование никеля медью несколько повышает его коррозионную стойкость. Сплавы никеля, содержащие 30% меди (например, монель -металл никель - основа, 27...29% меди, 2...3% железа, 1.2...1.8% марганца), обладают высокой коррозионной стойкостью в пресной и морской воде, растворах серной (до 20%), плавиковой и ортофосфорной кислот. Легирование никеля хромом заметно повышает стойкость в окислительных средах, однако увеличивается чувствительность к воздействию анионов хлора. Совместное легирование никеля хромом и молибденом повышает устойчивость сплавов в окислительных и восстановительных средах. [c.157]

    КОБАЛЬТА СПЛАВЫ — сплавы на основе кобальта. Отличаются малым коэфф. термического расширения — (15,9 — 16,5) 10 град в интервале т-р 20—870 С, жаростойкостью, высокой коррозионной стойкостью и особыми магнитными свойствами. Наибольшее применение нашли снлавы кобальта с тяжелыми металлами — железом, хромом, никелем, молибденом, вольфрамом и др. (табл.), нредставляюш,ие собой твердые растворы. Такие снлавы подразделяют на твердые, жаропрочные и магнитные. К твердым относятся сплавы типа стеллит, наплавляемые (для повышения износостойкости и реставрации рабочих органов) на кромки режупц1Х инструментов и детали машин. Стеллиты, содержащие 80% Со и 20% Сг, наз. мягкими (см. также Стеллит, Твердые сплавы). Твердые сплавы, упрочненные карбидными фазами с содержанием до 1% С, способны сохранять св-ва до т-ры [c.597]

    Кобальт менее распространен и более дорог, чем никель. Поэтому в виде сплавов с хромом и молибденом (или вольфрамом) он применяется в тех случаях, когда обеспечивает практические преимущества перед аналогичными сплавами на основе никеля или железа. Сплавы кобальта лучше противостоят, например, фреттинг-коррозии, эрозии в быстро движущихся жидкостях и кавитационным разрушениям. [c.369]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Кобальт содержится в рудах, минералах, сплавах, сталях и других промышленных и природных материалах чаще всего вместе с железом, никелем, марганцем, медью, хромом, молибденом, вольфрамом, ванадием и некоторыми другими элементами. Поэтому большое значение имеют методы отделения кобальта от названных элементов. [c.60]

    Обычно кислотоустойчивые и нержавеющие стали — это сплавы железа с хромом и легированные в целях улучшения их сопротивляемости молибденом, никелем, титаном, марганцем и другими элементами Содержание углерода в них порядка 0,15% Жаропрочные стали включают железо, хром, никель, их используют для изготовления арматуры печей, муфелей, воздухоподогревателей Вольфрам и молибден используют в качестве легирующих веществ [c.294]

    ИНКОНЕЛЬ м. Сплав на основе никеля, содержащий до 15% хрома, до 9% железа, а также алюминий, титан, молибден и др. жаростойкий и жаропрочный материал, используемый в авиации и ракетной технике. [c.158]

    Для никеля характерно благоприятное сочетание свойств высокой коррозионной стойкости во многих агрессивных средах, высоких механических свойств, хорошей обрабатываемости в горячем и холодном состоянии. Никель является основой коррозионностойких, жаростойких и жаропрочных сплавов. Никель обладает способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, кремний. Наиболее важные легирующ,ие элементы в коррозионностойких никелевых сплавах — хром, молибден, медь. Коррозионная стойкость одних никелевых сплавов связана с пассивностью, а других — с тем, что они имеют достаточно высокий равновесный потенциал и не замещают водород в кислых средах. Этим объясняется большое число сред, в которых никелевые сплавы могут с успехом использоваться кислоты, соли и щелочи (как с окислительным, так и с неокислительным характером), морская и пресная вода, а также атмосфера. [c.167]

    Сплав железа с углеродом при содержании последнего более 1,7% называют чугуном. Чугун тверд, но хрупок и не поддается ковке или прокатке. Он используется главным образом для отливок тяжелых машинных частей (станин, маховых колес и т. п.) и на переработку его на сталь. Для улучшения свойств чугуна его легируют, что обеспечивает возможность широкого использования его в промышленности. Легирование чугуна и стали обычно проводят хромом, никелем, марганцем, кремнием, молибденом, вольфрамом, ванадием, титаном, алюминием, ниобием, кобальтом, медью, бором, магнием. От качества и количества легирующих элементов зависят свойства чугуна и стали. Требования к химическому составу выпускаемого промышленностью чугуна определяются условиями его назначения. Так, например, жаростойкий чугун должен соответствовать по химическому составу требованиям ГОСТ 7769—63, отливки из ковкого чугуна ГОСТ 1215—59 (табл. 20, 21). [c.270]

    Сравнение устойчивости р-твердого раствора сплавов титана, содержащих примерно одинаковое количество легирующих элементов, таких как рений, никель, железо, молибден, вольфрам, хром, показало, что р-твердый раствор титана с вольфрамом более устойчив, чем р-твердый раствор титана с молибденом, железом и хромом, но менее устойчив, чем р-твердый раствор титана с рением и никелем. [c.9]

    ПЕРМАЛЛОЙ м. Общее название группы сплавов никеля с железом 20-60%, часто легируемых молибденом, хромом, медью, марганцем и др. отличаются высокой магнитной проницаемостью в слабых полях применяются в радиотехнике и др. [c.311]


    При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы. [c.362]

    Легкоплавкие стекла можно также спаивать со сплавами на основе никеля, железа, хрома и марганца, например с ваковитом. Для впаивания в тугоплавкие стекла применяются молибден, вольфрам и сплавы железо — никель — кобальт, например вакон. Все эти сплавы в виде проволоки, палочек, трубок, пластин, лент, профилей и готовых изделий можно приобрести через торговую сеть. Для очень тугоплавких стекол (пирекс, дюран 50, стекло для химической посуды 20) сплав для впаивания подобрать гораздо труднее. Обычно в этом случае используют молибден или вольфрам либо осуществляют впаивание через промежуточную вставку из другого стекла (например, помещают стекло № 8243 фирмы S hott между сплавом вакон 10 и стеклом для химической посуды 20). Для впаивания в кварцевое стекло подходит лишь молибден. [c.19]

    Fe), мелкой железной обсечки или стальной (ннзкоуглеродистой) стружки, ферросиликоалюмипия (60—65% Si, 8—12% Al) и флюсов — извести (95% СаО), плавикового шпата (80— 90% aFj). Шихту расплавляют теплом экзотермических восстановительных реакций в футерованной шахте (ковше). Сплав разливают в изложницы и охлаждают под слоем шлака, поставляют в измельченном виде. На его основе выплавляют лигатуры, содержаш пе молибден, железо, хром, никель, вольфрам и др. элементы. [c.643]

    При этой технологии (табл. 2-42) поК рытие изготавливается из суспензии металлического порошка (или смеси порошков) в биндере. Порошки могут состоять только из металлов, нерастворяющихся или мало растворяющихся в соединительных сплавах (разд. 2, 5-3) и образующих прочное соединение с керамикой. Применяемыми при этом металлами являются молибден, вольфрам, марганец, железо, хром, медь, никель, рений. К металлическим по рошкам иногда добавляют небольшое количество окисло1в (например, окисел марганца), чтобы облегчить процесс окисления, необходимый для образования соединения. Можно применить окисел молибдена вместо молибденового порошка либо смесь 10КИСЛОВ молибдена п марганца (в соотношении 20 1). [c.148]

    Другие материалы, содержащие хром и никель. Аустенитный чугун, содержащий никель и хром, подобно чугуну, упомянутому в главе III, обладает повышенной стойкостью по отношению к кислотам сравнительно с обыкновенным чугуном, хотя аустенитный чугун все же не так стоек, как аустенитные стали или чугун с высоким содержанием кремния, о котором говорится ниже. Медь является полезной составляющей этого класса сплавов. По данным Бейлли коррозия аустенитного чугуна в 5%-ной серной кислоте составляет Доо коррозии обыкновенного чугуна в тех же условиях. Подробности. можно найти также у Пирса Сплавы на базе никеля и хрома обладают многообещающими свойствами обзор этой группы сплавов дал Хенел . Нихром 80/20, часто употребляющийся как материал с высоким электрическим сопротивлением, во многих случаях коррозии, возможно, менее пригоден, чем тройной сплав, содержащий железо. Удивительно, что сплавы, содержащие железо, иногда не менее коррозионностойки, чем сплавы с малым содержанием железа. По отношению к азотной кислоте сплав, содержащий 80% никеля, 147с хрома и 6% железа, обладает стойкостью того же порядка, как и нержавеющие стали Хромоникель-железные сплавы, употребляющиеся в химической про.мышлен-ности при производстве уксусной кислоты, содержат вольфрам, молибден, кобальт и марганец. Финк и Кенни нашли, что коррозионная стойкость хромоникелевых сплавов то от- [c.477]

    Хром применяется в жаростойких сплавах в количестве 2—357о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—14 /о Сг, а ферритные 14—35 /о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствую-ш,ие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома. [c.17]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]

    Благодаря использованию ценных свойств индивидуальных металлов покрытиям можно приданать путем совместного электроосаждения металлов в виде сплавов разнообразные свойства. В виде сплавов можно получать элеьтролитические покрытия металлами, которые не выделяются из водных растворов на катоде, как например, вольфрам, молибден, рений и др. Таким способом получают жаростойкие покрытия сплавами вольфрам — железо, вольфрам — никель, вольфрам — кобальт, вольфрам — хром, молибден — никель и др. [c.234]

    Сами металлы и их сплавы чрезвычайно ценны для человека благодаря своим характерным свойствам. Современная цивилизация основана на применении железа и стали, причем ценные сорта стали изготовляют с включением в их состав наряду с железом таких металлов, как ванадий, хром, марганец, кобальт, никель, молибден, вольфрам и др. Значение этих сплавов обусловлено преледе всего их твердостью и прочностью. Столь ценные свойства являются следствием того, что [c.490]

    Сплавы на основе никеля, содержащие хром, железо, молибден и другие добавки, корродируют в зоне ила примерно так же, как и в неподвижной морской воде на больших глубинах (см. табл. 31). Например, сплав 80М —20Сг (нихром) подвергался щелевой коррозии как в иле, так и в воде над ним. Такие сплавы, как Инконель 625 и Хастеллой С, совсем не испытывали коррозии в зоне ила. На сплаве Инколой 825 наблюдалась случайная щелевая коррозия в придонных слоях воды и в иле [43]. [c.91]

    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей он способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при ргстяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий — важная добавка в инструментальной (до 2%) и конструкционной (до 0,2%) сталях, сталях для газопроводов высокого давления. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцевой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Им легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Он — компонент сплавов для постоянных магнитов. Вводят в сталь его в виде феррованадия— сплава железа с 35— 80% V. [c.17]

    МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ, интеркристаллит-ная коррозия — разрушение границ зерен вследствие электрохимической коррозии металлов. Вызывает потерю прочности и пластичности металлов, приводит к преждевременному разрушению конструкций. М. к. (рис.) подвержены сплавы на основе железа (железо — никель — хром железо — марганец — никель — хром железо — хром и др.), никеля (никель — молибден никель — хром — молибден), алюминия (алюминий — медь алюминий — магний — кремний) и др. элементов. [c.789]

    НЙКЕЛЯ СПЛАВЫ — спляпы тгя основе никеля. В пром. масштабах применяются с конца 19 — начала 20 в. С железом, хромом, медью, марганцем, кобальтом, молибденом, вольфрамом и др. элементами никель в широком интервале концентраций образует твердые растворы замеще- [c.64]

    ПЕРМАЛЛОЙ [англ. permalloy, от )erm(eability) — проницаемость и al-оу — сплав] — магнитно-мягкий прецизионный сплав на никелевой основе с высокой магнитной проницаемостью. В пром. масштабах применяется с 20-х гг. 20 в. Представляет собой сплав никеля и железа, легированный кремнием, марганце.м, хромом и молибденом с примесями углерода, фосфора и серы (табл. 1). Магн. св-ва П. (табл. 2) зависят от хим. состава, способа выплавки, видов термообработки и формы изделий, физ. св-ва — от содержания легирующих элементов. Различают П. первого класса (с нормальными магн. св-вами), второго (с повышен- [c.167]


Смотреть страницы где упоминается термин Сплавы никеля с молибденом и никеля с молибденом и железом (хромом): [c.137]    [c.566]    [c.682]    [c.348]    [c.292]    [c.186]    [c.418]    [c.90]    [c.534]    [c.640]    [c.685]    [c.689]    [c.743]    [c.375]    [c.445]   
Смотреть главы в:

Коррозия металлов Книга 1 -> Сплавы никеля с молибденом и никеля с молибденом и железом (хромом)




ПОИСК





Смотрите так же термины и статьи:

Железо сплавы

Молибден сплав с хромом

Молибден сплавы

Молибден сплавы с никелем

Сплавы железа с никелем и молибденом

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Сплавы хрома

никеля с молибденом и железом никеля с молибденом

сплав железа сплавы никеля с хромом

сплавы никеля его сплавы на железо



© 2025 chem21.info Реклама на сайте