Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотно-основной и окислительно-восстановительный катализ

    Гомогенный катализ. Сюда относятся каталитические процессы, в которых реагирующие молекулы и катализатор в форме атомов, молекул или ионов находятся в одной фазе и образуют гомогенную химическую систему. Многие реакции, протекающие в растворах, являются гомогенными каталитическими реакциями. К ним, например, относятся реакции кислотно-основного катализа, катализа комплексными соединениями и окислительно-восстановительного катализа ионами металлов. Гомогенные каталитические реакции в газовой фазе в чистом виде встречаются редко. Условно сюда можно отнести реакции рекомбинации радикалов с участием третьей частицы  [c.616]


    Г.— аналог иона аммония NH ". Свойства кислот в водных растворах обусловлены наличием иона Г., но в уравнениях реакций для краткости вместо Г. записывают Н+. Концентрация ионов Г. является показателем кислотности среды и выражается водородным показателем pH. Эта величина влияет на потенциалы некоторых окислительно-восстановительных реакций, на скорость реакций кислотно-основного катализа, на биохимические процессы, гидролиз и др. [c.73]

    Классификация каталитических реакций. Катализ делят на гомогенный и гетерогенный. Гомогенный катализ можно разделить на кислотно-основной (его вызывают кислоты и основания), окислительно-восстановительный (его вызывают соединения металлов переменной валентности), координационный (катализаторы — комплексные соединения), гомогенный газофазный (катализаторы — химически активные газы, такие, как N62, ВГз и т. д.) и ферментативный. Деление это не строго, так как одна и та же реакция, например гидролиз сложного эфира, может в зависимости от катализатора— кислоты, комплекса или фермента — попасть в ту или иную группу, [c.169]

    Реакции гетерогенного катализа обычно делят на два основных типа кислотно-основной катализ и окислительно-восстановительный катализ. В кислотно-основном гетерогенном катализе имеют место реакции, связанные с переходом протона, а в окислительно-восстановительном — связанные с переходом электронов. В связи с последним большое значение имеют каталитические процессы с применением полупроводниковых катализаторов. [c.164]

    Особое место занимают Р. в р., к-рые идут в сильно кислых и сильно основных (щелочных) средах, а также окислительно-восстановительные р-ции с участием ионов переходных металлов (см. Кислотно-основной катализ, Окислительно-восстановительные реакции. Окислительно-восстановительный катализ). [c.498]

    По типу каталитического действия катализаторов можно различить три вида катализа кислотно-основной, окислительно-восстановительный и координационно-комплексный. [c.189]

    По типу взаимодействия катализатора с реагирующими веществами все каталитические реакции делятся на два класса — окислительно-восстановительное гомолитическое) взаимодей ствие и кислотно-основное (гетеролитическое) взаимодействие. Катализаторами для окислительно-восстановительного катализа служат переходные металлы и оксиды металлов переменной валентности. Общий механизм окислительно-восстановительного катализа заключается в обмене электронами между катализатором и реагентами, который облегчает электронные переходы в реагирующих молекулах. Механизм ионного кислотно-основного катализа заключается в обмене протонами или ионами (анионами в катионами) между катализатором и реагирующими молекулами. Типичными катализаторами служат кислоты (доноры Н+) и основания (доноры ОН-). [c.106]


    В свою очередь гомогенный катализ можно разделить по типу применяемого катализатора на кислотно-основной (в присутствии кислот и оснований), окислительно-восстановительный (в присутствии ионов металлов переменной валентности), координационный или металлокомплексный (промежуточные продукты — комплексные соединения) и гомогенный газофазный (например, окисление диоксида серы кислородом в присутствии следов оксидов азота). К гомогенно-каталитическим процессам относят и ферментативный катализ биохимических процессов, происходящих в живых организмах под влиянием сложных белковых катализаторов — ферментов (энзимов). [c.234]

    В настоящее время можно считать общепринятым, что существует несколько типов гетерогенно-каталитических превращений, которые связаны с различными механизмами реакций и соответственно катализируются разными группами веществ. С. 3. Рогинский показал целесообразность выделения в ката-лизе вообще и в гетерогенном катализе в частности двух больших классов окислительно-восстановительного, или катализа с электронными переходами, и кислотно-основного, или ионного катализа. [c.19]

    Известно огромное количество гомогенно-каталитических реакций в растворах. Обычно их делят на процессы кислотно-основного и окислительно-восстановительного катализа. Первые характеризуются тем, что катализатор облегчает перемещение электронных пар без их разрыва в процессах окислительно-восстановитель-ного катализа катализатор способствует разрыву электронных пар. В первом случае мы имеем дело с гетеролитическими реакциями, во втором — с гемолитическими. Разумеется, резкой грани между этими группами процессов нет, и некоторые реакции в зависимости от условий могут проникать как по гетеролитическому, так и по гомолитическому механизму. [c.74]

    Различают кислотно-основный катализ (переход протона от реагента к катализатору или обратное перемещение, а в случае кислотообразователей — взаимодействие через свободную электронную пару) и окислительно-восстановительный катализ, когда промежуточным взаимодействием является электронный переход между реагирующим веществом и катализатором (наибольшей каталитической активностью обладают металлы 4-го, 5-го и 6-го периодов с недостроенной -оболоч-кой и их соединения). Примером первых является гидролиз сложных эфиров, ускоряемый кислотами, примером вторых — окисление ЗОз в 50з. [c.156]

    Гомогенный катализ наиболее распространен в растворах. В связи с большим числом конкретных примеров гомогенно-каталитические реакции этого типа принято делить на кислотно-основные и окислительно-восстановительные с участием комплексных соединений. К кислотноосновному катализу относят процессы изомеризации, гидратации и дегидратации, гидролиза, этерификации, алкилирования, деполяризации. В зависимости от типа основания или кислоты эти реакции условно делят на четыре группы  [c.181]

    Эта классификация показала главный путь развития теории катализа, основными проблемами которой являлись подбор катализаторов и механизм процесса. В результате был выделен тот вид каталитических процессов, который поставил в центре внимания катализаторы-полупроводники наряду с ним был охарактеризован и другой вид катализа, а именно катализ посредством кислотно-основных агентов. Такой дифференцированный подход к реакциям и катализаторам позволил создать что-то вроде двух надежных платформ, на каждой из которых оказалось возможным решать вместе, комплексно, обе названные. проблемы. При этом в ислотно-основном катализе главными агентами оказались ионы (чаще всего протоны), вызывавшие гетер олиз связей в молекуле реагента. А в окислительно-восстановительном катализе агентами явились электролы или электронные дырки катализатора-полупроводника, вызывавшие гомолиз связей. [c.241]

    Весьма распространен жидкофазный гомогенный катализ. Опубликованы многочисленные исследования по ионному катализу, наиболее важными видами которого являются кислотный и основной катализ. К процессам, катализируемым кислотами и основаниями, относятся этерификация, омыление, инверсия, мутаротация, енолизация и многие окислительно-восстановительные реакции. [c.82]

    По типам реакций (взаимодействий) катализ делится на окислительно-восстановительный и кислотно-основной. [c.67]

    Как окислительно-восстановительные, так и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула — решетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которы-е десорбируются. [c.27]


    Для гетерогенного катализа газов применяют труднолетучие основания или кислоты, например, Н3РО4 или соли, которые наносят на пористые зерна носителей. Типичными являются также кислотные или амфотерные окислы (5Юг, 2г02,А120з и др.). Для некоторых сложных процессов (риформинг, полимеризация и др.) необходимы катализаторы, обладающие полифункциональными свойствами и способные вести катализ как по окислительно-восстановительному, так и по кислотно-основному механизмам [1, 3]. [c.27]

    Волькенштейн [5] впервые показал, что локализация носителя заряда на пустом адсорбционном ПС (в его терминологии — нейтральная форма хемосорбции) приводит к упрочнению связи и воз никновению реакционноспособной заряженной ионно-радикальной формы хемосорбции. Тем самым была показана возможность управ ления окислительно-восстановительным катализом за счет возбуждения электронной подсистемы полупроводника. Однако, как мы это неоднократно показывали [3], очень многие окислительно-восстановительные реакции протекают не по радикальному механизму. За рамками электронной теории оказались реакции кислотно-основного катализа. В донорно-акцепторном механизме рассматривается [3] более общий случай — деформация адсорбционного комплекса в поле захваченного носителя заряда. Так, например, захват дырки делокализация электрона) на донорном ПС приводит к росту затягивания неподеленной пары электронов молекулы В на центр С, в результате чего деформируются внутримолекулярные связи молекулы В, растет ее реакционная способность. Энергия активации гетеролитической диссоциации молекулы уменьшается [2]. Ситуация, рассматриваемая Волькенштейном [5], соответствует переходу донорно-акцепторного комплекса (б<1) к комплексу с полным переносом заряда (6- 1). При построении модели нейтральной формы адсорбции отдается предпочтение или валентным формам связи [5], или координационным связям [3]. [c.56]

    В настоящее время соотношения энергетических параметров в процессах окислительно-восстановительного и кислотно-основного катализа далеко еще не ясны. [c.98]

    По характеру химического взаимодействия при катализе различают две основные группы каталитических процессов кислотно-основной и окислительно-восстановительный. [c.141]

    Для каждого из этих классов наблюдается свое специфическое действие добавок. В окислительно-восстановительном катализе сушествен-ное значение имеют добавки, из.меняющие электронное состояние твердого тела в кислотно-основном катализе — добавки, изменяющие ак-цепторно-донорные свойства поверхности, способность присоединять или отдавать пару электронов. Особую роль играет протон, как легко подвижная частица, и сильный деформирующий агент с большим отношением заряда к радиусу (е г). [c.277]

    В Г. к., как и в др. областях катализа, выделяют два типа р-ций окислительно-восстановительные, при к-рых роль катализатора сводится к участию в переносе неспаренных электронов, и кислотно-основные, при к-рых взаимод. катализатора с реагирующими в-вами сопровождается переходом протона или электронных пар. Окислит.-восстановит. Г. к. происходит на пов-сти металлов или полупроводников, т.е. в-в, способных передавать или принимать неспаренные электроны от реагирующих молекул. Кислотно-основные р-ции протекают на пов-сти твердых к-т или оснований, способных передавать или принимать протон от реагентов или же способных к хим. взаимод. с реагентами без разделения пары электронов. Рассмотрим возможные механизмы этих взаимодействий. [c.539]

    Все каталитические реакции, происходящие при гомогенном н гетерогенном катализе, делят по типу взаимодействия катализатора с реагирующими веществами на два основных класса окислительно-восстановительное (гомолитическое) взаимодействие и кислотно-основное (гетеро-литическое) взаимодействие (см. табл. 8). [c.218]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Такого типа катализаторы, которые ранее применялись в реакциях кислотно-основного типа (крекинг, изомеризация дегидратация и др.), оказались достаточно эффективными и в окислительно-восстановительных процессах. Это направление, возникшее на границе кислотноюснов-ного и окислительно-восстановительного катализа, бурно развивалось последние 20-25 лет, хотя отдельные исследования проводились и ранее. [c.133]

    До недавнего времени считалось, что обязательным компонентом всех ферментов являются белки. Был накоплен огромный материал, свидетельствующий, что именно белки способны опознавать определенные субстраты, обеспечивая тем самым высокую специфичность биологического катализа. Кроме того, многочисленные данные демонстрировали, что белки обеспечивают оптимальную ориентацию субстратов относительно функциональных групп фермента, осуществляющих химическое превращение. Этими группами в случае кислотного, основного и нуклеофильного катализа чаще всего являются группы, входящие в состав белка. В случае электрофильного и окислительно-восстановительного катализа в химическом превращении, как правило, участвуют специальные кофакторы — ионы металла или сложные органические молекулы. Но в этом случае белковая часть фермента организует работу кофактора так, чтобы обеспечивалась свойственная ферменту специфичность и одновременно с Высокой эффективностью реализовался каталитический потенциал кофактора. Однако в начале 80-х годов были от крыты и стали объектом интенсивных исследований ферменты, построенные из молекул рибонуклеиновых кислот (рибозимы). Интерес к этой группе ферментов резко усилился в связи с разработкой методов молекулярной селекции нуклеиновых кислот, позволившей, в частности, начать направленное конструирование рибозимов с разнообразными типами каталитической активности. [c.11]

    Это предположение подтверждено для кислотно-основного катализа анализом имеющихся в литературе сведений [140]. Оправдывается этот вывод и для процессов окислительно-восстановительного катализа. Так, например, ионы никеля в растворе катализируют процессы гидрирования так же, как и никель Ренея в твердой фазе. [c.63]

    Нами рассмотрен иной механизм, объясняющий заряжение поверхности. В этом механизме реакционная способность частиц не связывается с радикальными формами хемосорбции. Например, цри образовании координационной связи затягивание неподе-ленной пары электронов приводит к изменению кристаллических полей вокруг близлежащих дефектов. Благодаря изменению сечений захвата дефекта и его положения в зоне, последний превращается в ловушку дырок. Локализация дырки приведет, в свою очередь, к еще большему затягиванию неподеленной пары и к еще большей протонизации молекулы, причем последняя превращается в сильный бренстёдовский центр. Изменяя концентрацию дырок в слое пространственного заряда, можно управлять не только реакциями окислительно-восстановительного катализа, но и кислотно-основного. Помимо электронных факторов, на каталитическую активность будут влиять химические факторы природа центра и его окружение, число поверхностных химических групп, связанных с ним и т. д. [c.132]

    Открытие комплексных катализаторов полимеризации оказало сильное влияние на изучение и использование гомогенных катализаторов. Эти исследования расширили рамки традиционного гомогенного кислотно-основного катализа и привели к открытию большой и стремительно развивающейся новой области гомогенного окислительно-восстановительного катализа. Начало ей положили пионерские работы Галнерна [21] по применению в ка- [c.22]

    Обычно катализатор образует комплекс с субстратом или реагентом, активируя реакционный центр. В соответствии с природой катализаторов и характером электронных перемещений в реакционных системах выделяют несколько типов катализа кислотно-основный, координационно-комплексиый, окислительно-восстановительный и ( )ерментативный. [c.241]

    Основные процессы контактного катализа можно разделить на два больших класса электронные (радикальные) и ионные (кислотно-основные)-. К первому классу относятся процессы, связанные с переходом электронов между катализаторами и реагирующими веществами (окислительно-восстановительные реакции) окисление, восстановление, разложение, гидрогенизация, дегидрогенизация, циклизация и ароматизация углеводородов и др. Типичными катализаторами для них являются металлы и полупроводники, т. е. вещества, обладающие свободными или легковозбуждаемыми электронами (или дырками). [c.471]

    Дестабилизирующие эффекты в фермент-субстратном комплексе оказывают влияние на состояние преобразуемых групп субстратов. Однако в ферменте предусмотрены также функциональные группы, которые более тонко воздействуют на преобразуемые группы. Общий кислотно-основной катализ довольно обычен в ферментах, и с его помощью скорость реакции может увеличиваться в 1000 раз. В химотрипсине эту функцию выполняет зарядно-релейная система, которая посредством водородных связей обеспечивает протонный транспорт в нескольких стадиях реакции (рис. 11.1). В других ферментах, например в глутатионредуктазе, белок обладает активными группами (FAD и цистеиновая пара с окислительно-восстановительной активностью) для транспорта электронов через молекулу фермента (рис. 11.4). [c.281]

    Вследствие кислотно-основного катализа растворителя на первой стадии процесса происходят фрагментация и функциолизация структурных звеньев лигнина, что приводит к увеличению количества структур со свободным фенольным гидроксилом. Молекулы растворителя атакуют органический субстрат, облегчая его диссоциацию, и гидратируют богатые энергией и легко подвергающиеся электростатическому взаимодействию ионы. В качестве таковых в литературе рассматриваются карбоний-катионы и хинонметид, являющиеся по существу мезомерными формами одной и той же активной кинетической частицы (см. гл. 3). Присутствие в растворе гидратированных активных частиц приводит к образованию органической редокс-сис-темы алкилфенол - карбоний - катион. Кроме того, в результате кислотно-основного катализа растворителя при варьировании условий (концентрация оксида серы (IV), активность протонов, температура) изменяется ион-молекулярный состав сульфитных варочных растворов, который характеризуется концентрацией равновесных форм оксисоединений серы, различающихся по редокс-свойствам и также способных образовывать ОВС. Потенциалопределяющими из этих окислительно-восстановительных систем являются системы пиросульфит -бисульфит и пиросульфит - сульфит (см. гл. 2). [c.252]

    Гомогенный катализ можно разделить (классифицировать) на кислотно-основной (катализаторы - кислоты и основания), металлокомплексный (координационный) (катализаторы металлокомплексные соедршения), окислительно-восстановительный (катализаторы - ионы металлов переменной валентности), гомогенный газофазный (катализаторы - химически активные газы, такие, как N0, NO2, ВГа и др.) и ферментативный (ка1а)ш9аторы -ферменты (энзимы) - белковые молекулы с oTHO nitooAO большой молекулярной массой, например химотрипсин, элАСтаЗа папаин, фицин, щелочная фосфатаза и др.). [c.377]

    Многие поверхностно катализируемые реакции могут также одновременно протекать в виде гомогенных газовых реакцйй. Прй более высоких температурах преобладает некатализируемая гомогенная реакция, при низких температурах — поверхностная реакция. Различают две большие группы поверхностных реакций реакции с кислотно-основным и с окислительно-восстановительным механизмом катализа. [c.475]


Смотреть страницы где упоминается термин Кислотно-основной и окислительно-восстановительный катализ: [c.253]    [c.247]    [c.248]    [c.247]    [c.248]    [c.141]    [c.68]    [c.287]   
Смотреть главы в:

Физическая и коллоидная химия -> Кислотно-основной и окислительно-восстановительный катализ




ПОИСК





Смотрите так же термины и статьи:

Катализ кислотно основный

Катализ кислотно-основной

Катализ кислотный

Катализ окислительно-восстановительны

Кислотно-основное

ЛИЗ кислотно основной



© 2025 chem21.info Реклама на сайте