Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь структура — биологическая активность

    Строение вещества. В этом разделе изучается строение атомов и молекул, а также агрегатные состояния веществ. В экспериментальных исследованиях строения молекул наибольщее применение получил метод молекулярной спектроскопии. При изучении агрегатных состояний рассматриваются взаимодействия молекул в газах, жидкостях и кристаллах. Этот раздел имеет важное значение для фармации. Подавляющее большинство лекарственных веществ представляет собой сложные органические соединения с несколькими функциональными группами в молекуле. Химическая структура соединений определяет их биологическую активность. Установление химической структуры соединений методами молекулярной спектроскопии и выяснение связи с биологической активностью представляют собой важные проблемы фармации. [c.9]


    Одним из наиболее важных типов слабых связей между биологически активными молекулами является водородная связь (гл. 2, разд. А.7). Мы уже говорили о том, какова роль диполь-дипольного взаимодействия этого типа для формирования структуры белков, углеводов и нуклеиновых кислот. Рассмотрим теперь значение водородных связей для биологического растворителя — воды. [c.246]

    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]

    РАЗРАБОТКА МЕТОДОЛОГИИ КОМПЬЮТЕРНОГО МОЛЕКУЛЯРНОГО КОНСТРУИРОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ МОДЕЛЕЙ СВЯЗИ СТРУКТУРА - СВОЙСТВО И СТРУКТУРА - БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ДЛЯ НАПРАВЛЕННОГО СИНТЕЗА ВЕЩЕСТВ С ЗАДАННЫМИ СВОЙСТВАМИ [c.42]

    Таким образом, произведен анализ антибактериальной активности производных хинолона. Предложен новый алгоритм количественной оценки связи структура - антибактериальная активность , учитывающий эффект рецептора. Показано, что характеристики взаимодействия модельного рецептора с молекулой находятся во взаимосвязи с проявляемой биологической активностью. Полученные результаты не противоречат известному механизму антибактериального действия производных хинолона. [c.6]


    Новиков В. Н., Раевский О. А. Представление молекулярной структуры в виде спектра межатомных расстояний для изучения связи структура— биологическая активность // Хим. фармацевт, жури. 1982. № 5. С. 574— 581. [c.144]

    Одной из важных задач современной науки является разработка новых подходов и методов компьютерного конструирования молекулярных структур органических соединений на основе предварительного анализа связи между их структурой и свойствами / биологической активностью, что открывает путь к направленному синтезу веществ с заданными характеристиками. Синтез больших серий соединений и в особенности их массовые испытания для поиска веществ с желательными физическими и химическими свойствами или биологической активностью, как правило, занимают очень большое время и требуют весьма высоких материальных затрат. В связи с этим огромное значение приобретает разработка подходов, которые позволили бы повысить эффективность такого поиска и сделать его целенаправленным. Для этого необходимы надежные средства прогнозирования свойств соединений, а также автоматизированною конструирования серий сфуктур с оптимальными характеристиками. [c.42]

    Молекулярная масса РНК колеблется от 25 000 до 1 000 000. В отличие от ДНК РНК нестойки не только к кислоте, но и к щелочи, под действием которой они распадаются на нуклеотиды. Нестойкость РНК к щелочи обусловлена наличием у второго углеродного атома рибозы гидроксильной группы, что приводит к лабилизации сложноэфирной связи рибозы с фосфорной кислотой. Макромолекулярная структура РНК менее изучена, чем ДНК. Макромолекулы РНК линейны, расщепление молекулярной цепи хотя бы в одном месте приводит к потере биологической активности. Для некоторых видов РНК также характерны определенные соотношения оснований  [c.364]

    Сформулированы принципы алгоритма направленного автоматизированного конструирования структур органических соединений с оптимальным набором свойств на основе предварительно построенных моделей связи структура-свойство и структура-биологическая активность . [c.37]

    Успешное использование машинных средств при описании каталитических процессов связано с применением адекватного языка описания химической структуры. В настоящее время для описания химических структур все шире используют теоретико-графовые н топологические представления [54—56], например, при установлении изомеров в описании разветвленных молекул [57, 58] перечислении изомеров, соответствующих эмпирической формуле [59] определении структурного сходства и различия однотипных соединений [60] описании перегруппировок в полиэдрических координационных соединениях [61, 62] исследовании корреляций структура—свойство [63] и химическая структура—биологическая активность [64, 65] расчете квантовохимических параметров [63]. Перечисленные подходы, используя тот или иной способ кодирования структур, основываются на методах иденти-фикацпп, распознавания, логических выводов. [c.91]

    Существует связь между химической структурой вещества и его токсическим действием. По правилу Ричардсона, которое применимо к веществам алифатического ряда и спиртам, сила наркотического действия возрастает с увеличением числа атомов углерода в молекуле, В качестве примера можно указать, что легкие бензины менее токсичны, чем тяжелые бутиловый, амиловый и другие высшие сиирты токсичнее, чем этиловый и проииловый. По правилу разветвленных цепей наркотическое действие ослабляется с разветвлением цепи углеродных молекул. Это наблюдается среди углеводородов, являющихся изомерами, имеющих различия в структуре (иа-иример, изогеитан менее ядовит, чем геитан). По правилу кратных связей биологическая активность веществ возрастает с увеличением числа ненасыщенных связей, т, е. с увеличением неиредельностн. Так, токсичность увеличивается, например, от этана (СНз—СНз) к этилену (СН2=СН2) и ацетилену (СН = СН), [c.42]

    Автоматизированная информационная система для химии должна решать широкий круг задач, в числе которых важное место занимают корреляционные задачи. В зависимости от типа искомых корреляций (например, инфракрасный спектр — структура , ультрафиолетовый спектр — структура , биологическая активность — структура ) требуется свой специфический подход к структурной формуле и, возможно, свой способ фрагментации. От задачи к задаче меняется и требуемая глубина индексирования. Это связа 10 с тем, что значимые фрагменты для различных корреляционных задач будут различны. В этой ситуации автоматическое индексирование является удобным средством для соответствующего представления структурной формулы как набора потенциально значимых фрагментов . Отсюда ясно, как тесно связана проблема автоматического индексирования с проблемой формализации понятия структурной родственности, рассматриваемой в гл. VII. [c.119]


    В пространстве закрученная в спираль полипептидная цепь образует третичную структуру белка (рис. 3). Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, например, между атомами серы часто образуется дисульфидный мостик (—5—8—), между карбоксильной группой и гидроксильной группой имеется сложноэфирный мостик, а между карбоксильной группой и аминогруппой может возникнуть солевой мостик. Для этой структуры характерны и водородные связи. Третичная структура белка во многом обусловливает специфическую биологическую активность белковой молекулы. [c.19]

    Известно, что на биологическую активность белков влияет не только среда их функция существенным образом зависит от их строения. Обычно структурные особенности белков разделяют на несколько категорий. Первичная структура белка — ЭТО последовательность аминокислотных остатков в цепи, которая устанавливается с помощью химических методов анализа. Цепь может свертываться в спираль или принимать особую форму за счет образования водородных связей между амидными группами. Эта особенность структуры белка, являющаяся [c.300]

    За прошедшие годы синтезированы тысячи химических соединений и исследовано их биологическое действие. Однако обобщающая теория, которая могла бы четко сформулировать зависимость между химической структурой и фармацевтическим действием, пока отсутствует. Большие надежды возлагаются на биоорганическую химию — новую науку, возникшую в последние годы на стыке органической химии и биохимии и занимающуюся изучением структуры различных биологически активных соединений в связи с их функциями в организме человека. [c.206]

    Рассмотренные эффекты могут иметь значение и для биофизики. В частности, поверхностные диполи фосфолипидных мембран могут оказывать влияние на электрогенные биофизические процессы, причем это влияние зависит от степени гидратации поверхности. Биологически активные ионы (например, Са +), как известно, способны менять степень гидратации фосфолипидной поверхности [430]. Возможно, регуляторная функция этих ионов связана с изменением структуры ДЭС в результате уменьшения степени гидратации поверхности под влиянием этих ионов. [c.160]

    Разработка новых подходов и методов для анализа связи между структурой и свойствами и биологической активностью органических соединений, открывающих путь к эффективному планированию синтеза соединений с заданными характеристиками, является важной проблемой современной органической химии. В статье рассматриваются основные принципы методов предсказания физико-химических свойств и биологической активности химических соединений, а также дизайна новых соединений с заданными свойствами и биологической активностью, развиваемые нами новые подходы и их применение для решения конкретных задач. Основные направления работ связаны с построением регрессионных моделей и генерацией структур, использованием локальных молекулярных характеристик и искусственных нейронных сетей, молекулярным моделированием белков и лигандов. [c.112]

    Большой интерес вызывает пространственная структура биологически активных олигопе1 тидов. Большинство из них не образует четких пространственных форм в водном растворе. Вместе с тем в ряде случаев прослеживается присутствие свернутых форм со сближенными С- и -концевыми участками. В неполярных средах или при взаимодействии с матрицей рецептора свернутые формы могут стабилизироваться электростатическими взаимодействиями противоположно заряженных группировок (рис. 63). Для многих биологически активных пептидов — брадикинина, тафцина, энкефа-линов, пептида дельта-сна, фрагментов кортикотропина, мелано-тропина и др. были получены циклические аналоги в которых свернутые конформации фиксированы образованием ковалентных связей. Проявление этими аналогами высокой биологической актив- [c.110]

    Приведенные соображения объясняют также, по-видимому, влияние больших многозарядных ионов (оптически активных или иных), полиэлектролитов и протеинов на реакции комплексов. Так, например, катионы бруцина, хинина и стрихнина [141] ускоряют диссоциацию и рацемизацию [Ре(рЬеп)з] . При этом катионы, удерживаемые комплексом просто за счет вандерваальсовых сил, понижают электронную плотность у координированного атома азота и повышают скорости реа[кций. Ассоциированный анион камфорсульфоната вызывает увеличение скорости реакции, вероятно, вследствие результирующего разрыхления структуры иона [Ре(рЬеп)з]- при замещении гидратационной водь1 на анион. Аналогично влияют большие ионы на [К1(рЬеп)д] [69]. В этом случае наблюдается небольшое отличие между и /-изомерами. Возможно, что существует связь между биологической активностью комплексов и их поведением в присутствии полиэлектролитов и протеинов [79]. [c.111]

    Равновесие 2К5Н- - /гОг = — ЗН + НгО сильно сдвинуто вправо, если раствор нейтрален или содержит неболь-щие количества щелочей в кислых растворах, наоборот, устойчивы сульфгидрильные группы 5Н. Связи — 5 —5 — могут быть внутримолекулярными или связывать мономерные единицы белка (например, сывороточный альбумин) в одну крупную частицу. В стабилизации формы молекулы играют роль и гидрофобные связи. Гидрофобные связи возникают за счет сил взаимодействия между углеводородными частями молекул белка. Углеводородные группы белковых частиц, находящихся в водной среде, ориентированы во внутренние зоны частицы, а гидрофильные группы (ОН, СООН) находятся на внещней стороне, которая обращена к воде. Вследствие этого внутри молекулы белка возникает углеводородное ядро, причем для того, чтобы его разрушить и перевести углеводородные группы в водную среду, надо затратить работу. Это и означает, что между углеводородными частями молекулы действуют силы притяжения. Кроме водородных, дисуль-фидных и гидрофобных связей, в поддержании формы молекулы белка принимают участие и другие факторы имеет значение возникновение солевых мостиков, действие сил Ван-дер-Ваальса особенно большое влияние оказывают молекулы воды. Сохранение определенной формы молекулы важно с биологической точки зрения. Оно обеспечивает, в частности, такое взаимное расположение групп атомов на поверхности молекулы, которое необходимо для проявления каталитической активности белка, его гормональных функций и т. д. Поэтому устойчивость глобул, так же как и многие особенности структур биологически активных молекул, не случайное свойство, а одно из средств стабилизации организма. [c.57]

    Разработаны методы синтеза фторсилилметиловых эфиров бензостойких кислот, исследована их структура и ее связь с биологической активностью. Рассмотрены возможные области их применения. Лит. — 6 назв. [c.280]

    В ряде случаев такого рода исследования уже перешли от неизбежного на первых этапах эмпирического поиска к направленному синтезу соединений с аналогичным или модифицированным действием наос-нове достаточно обоснованных концепций. В первую очередь здесь должны быть отмечены работы по изучению механизма действия антибиотика циклосерина и направленному изысканию специфических ингибиторов пиридоксалевых ферментов, проводимые А. Е. Браунштейном, Р. М. Хомутовым, Е. С. Севериным и М. Я. Карпейским. Исследования по выяснению связи между структурой и биологической функцией в ряду антибиотиков-депсипептидов позволили разработать новый то-похимический подход к изучению зависимости между строением и биологическим действием соединений пептидной и депсипептидной природы. Основным итогом этих исследований явилось выяснение причин взаимозаменяемости амидных и сложноэфирных связей в биологически активных пептидах и депсипептидах при полном сохранении анти-бионической активности, продемонстрированное, в частности, на примере антипода энниатина В (М. М. Шемякин, Ю. А. Овчинников, [c.517]

    Примером может служить молекула рибонуклеазы, третичная структура которой фиксируется четырьмя дисульфид-ными мостиками (рис. 66). Если нативную (сохранившую свои природные свойства и, в частности, каталитическую активность) рибонуклеазу обработать мочевиной и меркаптоэта-нолом, то дисульфидные мостики разрываются — происходит денатурация с утратой биологической активности и изменением третичной структуры. После удаления реагентов, вызвавших денатурацию, рибонуклеаза под действием кислорода воздуха снова замыкает свои дисульфидные связи, принимая свойственную ей третичную структуру и вновь приобретая биологическую активность. [c.641]

    Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептидных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединиц (клубков) миогло-бина - дэух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    Характер концентрационной зависимости молярной солюбилизации может быть различным для разных конкретных систем. Например, при солюбилизации этилбензола в растворах калиевых мыл жирных кислот (рис. 22, а) величина линейно возрастает в широкой области концентраций. В случае же олеата натрия молярная солюбилизация остается постоянной в некоторой концентрационной области выше ККМ, после чего начинает резко возрастать при дальнейшем увеличении концентрации (рис. 22,6). Иногда обнаруживается ступенчатое повышение солюбилизирующей способности с концентрацией ПАВ (например, в случае биологически активного полуколлоида—холата натрия [26]). Но во всех случаях общей является тенденция к возрастанию солюбилизирующей способности при увеличении концентрации солюбилизатора, что связано с полидисперсным характером и лабильностью мицеллярных структур. [c.81]

    Хотя одна водородная связь понижает энергию системы на несколько кДж/моль, коллективное действие огромного числа водородных связей между молекулами полиамидов, полипептидов и других синтетических полимеров обусловливает прочность волокон и другие ценные свойства. Волокнистые белки живых тканей также обязаны своей структурой водородным связям между молекулами полипептидов. Водородные связи между молекулами органических веществ, содержащих ОН-, КН- и СО-группы, играют большую роль в жизни растений и животных. Небольшая энергия Н-связей приводит к тому, что в живом организме они легко возникают и разрушаются, давая начало образованию множества биологически активных к<5мпонентов важных биохимических процессов. [c.275]

    Стереорегулярные полимеры возникают благодаря наличию асимметрического атома углерода в макромолекуле полимера. Это — стереоизомеры. Их строение схематически показано на рис. 3, где зигзагообразная основная цепь для наглядности помещена в одной плоскости. Легко убедиться, что вращение вокруг простых связей в основной цепи с учетом валентного угла между связями —С—С— не приводит к разупорядочиванию относительного расположения заместителей. Специальные методы синтеза приводят к получению изотактических макромолекул, когда заместители расположены по одну сторону плоскости, синдиотактических, когда заместители находятся по разные стороны плоскости, и атактических, когда заместители ориентированы нерегулярно. Взаимное отталкивание заместителей, изображенных на рис. 3, приводит к тому, что они смещаются относительно друг друга в пространстве н поэтому плоскость симметрии оказывается на самом деле изогнутой в виде спирали. Структура спиралей характерна не только для макромолекул с углерод-углеродными связями в основной цепи, но и для других видов макромолекул, в том числе и для биологически активных (например, двойная спираль ДНК). Различные стереоизомеры имеют и разные механические свойства, особенно сильно отличающиеся от свойств атактических полимеров того же химического состава. [c.12]

    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]


Библиография для Связь структура — биологическая активность: [c.18]    [c.24]    [c.24]   
Смотреть страницы где упоминается термин Связь структура — биологическая активность: [c.95]    [c.43]    [c.217]    [c.354]    [c.140]    [c.21]    [c.140]    [c.40]    [c.108]    [c.119]    [c.147]    [c.687]    [c.43]   
Смотреть главы в:

Основы органической химии лекарственных веществ -> Связь структура — биологическая активность




ПОИСК







© 2024 chem21.info Реклама на сайте