Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные спектры биополимеров

    ЭЛЕКТРОННЫЕ СПЕКТРЫ БИОПОЛИМЕРОВ [c.284]

    ЭЛЕКТРОННЫЕ СПЕКТРЫ БИОПОЛИМЕРОВ 287 [c.287]

    Электронные спектры биополимеров [c.362]

    Наиболее интересным в случае биополимеров является вопрос о влиянии конформации на нормальные колебания. Как и при анализе электронных спектров, имеет смысл уделить основное внимание изменению спектра хромофора при образовании той или иной вторичной структуры. В случае белков и полипептидов наибольший интерес вызывают три инфракрасные полосы. Все они связаны с колебательными переходами в пептидном остове и могут быть отнесены на счет нормальных колебаний простых групп атомов. Это полосы, отвечающие растяжению связей N—И и С=0 с 3300 и -1630 — 1660 см (полоса амид I) соответственно и деформации связи N—И с тах (полоса амид II). Эти полосы довольно легко зарегистрировать, [c.115]


    Инфракрасные спектры молекул — результат энергетических переходов между различными колебательными, вращательными и реже электронными уровнями под действием электромагнитного излучения. Эти переходы значительно различаются по энергиям примерно от 0,4 до 140 кДж/моль. Соответственно различают ближнюю ИК-область в диапазоне примерно от 0,8 до 2,5 мкм (12 500—4000 см- ), в которой наблюдаются электронные и колебательные переходы основную или среднюю ИК-область от 2,5 до 16 мкм (4000—625 см ), связанную в основном с колебаниями молекул, и дальнюю, или длинноволновую, ИК-область от 16 до 200 мкм (625—50 см ), в которой наблюдаются вращательные переходы, колебания в тяжелых молекулах, в ионных и молекулярных кристаллах, некоторые электронные переходы в твердых телах, крутильные и скелетно-деформационные колебания в сложных молекулах, например в биополимерах. В настоящее время наибольшее развитие получила спектроскопия в средней ИК-области, в которой работает большинство серийных приборов. [c.199]

    Спектры парамагнитного резонанса эффективно применяются в исследованиях биополимеров и, в частности, ферментов. Рассмотрим сущность явления парамагнитного резонанса — ядерного (ЯМР) и электронного (ЭПР). [c.334]

    Энергетический спектр молекул знать очень важно, поскольку система электронных, колебательных и вращательных уровней определяет все физико-химические свойства. В связи с этим методы молекулярной спектроскопии оказались плодотворными при решении многих задач современной физики, химии, биологии и техники. Так, они с успехом используются при разработке квантовых генераторов и ракетных топлив, при изучении биополимеров и автоматизации промышленных химических процессов. [c.5]

    Для других ядер, атомы которых содержат большее число электронов, диапазон химических сдвигов значительно шире, достигая для 13с 150-200 м. д., что позволяет заметно повысить разрешение сложных спектров ЯМР для биополимеров. [c.283]

    Квантовомеханический анализ спектров КД большинства биополимеров сопряжен с большими трудностями. Такие хромофоры, как азотистые основания нуклеиновых кислот и ароматические аминокислоты, гораздо сложнее пептидной группы. Здесь необходимо учитывать значительно большее число электронных состояний, моменты переходов для которых (а значит, поляризация и интенсивность) редко бывают известны с достаточной точностью. Тем не менее значительный по объему экспериментальный материал, накопленный при изучении оптической активности полипептидов, белков и нуклеиновых [c.77]


    Дифференциальная спектроскопия впервые была использована для сопоставления электронных спектров биополимеров, претерпевающих переходы на молекулярном уровне (денатурация белков, переходы спираль — клубок в полипептидах или ДНК и т. п.). Современные спектрометры позволяют сразу получать дифференциальные спектры, что удобно и для исследований процессов полимеризации можно осуществлять непрерывный мониторинг полимеризующейся системы вместо отбора проб или использования не слишком надежного дилатометрического метода. [c.320]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Метод спиновых меток оказался весьма эффективным для изучения структуры биологических мембран и конформационных явлений в мембранах [263, 264]. Весьма перспективно изучение ядерной релаксации в биополимерах, содержащих парамагнитную метку. Время релаксации зависит от взаимодействия спинов ядра и электрона и, следовательно, от расстояния между ними (Т пропорционально г ). Тем самым, можно получить информацию о геометрии молекулы и о ее движениях [265]. В работах [266] изучались спектры ЭПР и ЯМР алкогольдегидроге-назы, меченной аналогом никотинамидадениндинуклеотида. Оказалось, что метка конкурирует с НАД-Н в месте связывания ферментом, сильно иммобилизуется белком, резко изменяет время релаксации протонов воды, причем величина Т сильно зависит от концентрации спирта. Установлено место связывания спирта этим ферментом и оценены кинетические и геометрические характеристики системы. [c.346]

    Присутствие гидрофобных областей в структуре белков доказано экспериментально по данным растворимости углеводородов в растворах белков [283—286] и по интенсификации флуоресценции реагентов типа К—О—5 или А—О—5, связанных или сорбированных в этих областях. На большое значение флуоресценции при таких исследованиях впервые указывали Остер и Нишид-жима [287, 288]. Они подчеркивали, что молекула основания со свободно вращающейся группой хромофора начинает сильно флуоресцировать, если вращение заторможено вследствие адсорбции. Тушение флуоресценции вследствие теплого рассеяния энергии возбуждения за счет внутреннего вращения может быть уменьшено при фиксации планарной молекулы на биополимере. В последнее время подобное увеличение флуоресценции исследуется в связи с наличием в белках гидрофобных областей. Например, при адсорбции 1-анилино-8-нафталинсульфокислоты (АНС) на апомиоглобине и апогемоглобине, свободных от группы гема, флуоресценция группы претерпевает изменения добавление гема восстанавливает первоначальную флуоресценцию [289]. При адсорбции полоса флуоресценции 515 нм смещается в область 454 нм, а квантовый выход увеличивается в 200 раз, от 0,004 до 0,98. Вообще я — л возбужденные состояния я-электрон-ной системы стабилизуются по сравнению с основным состоянием за счет воздействия молекул растворителя в относительно большей степени, так что снятие этого эффекта интенсифицирует флуоресценцию и вызывает смещение в длинноволновую часть спектра. Опыты с модельными соединениями в растворителях с различными дипольными моментами свидетельствуют в пользу такого объяснения. Доказательством наличия в бычьем сыворо- [c.378]

    Отдельная группа исследований ведется Ю. С. Лазуркииым совместно с А. Ф. Усатым и посвящена действию излучений на биополимеры. Здесь основным средством исследовапия является электронный парамагнитный резонанс, спектры которого изучаются непосредственно в процессе облучения препаратов аминокислот, пептидов и белков быстрыми электронами от электростатического генератора [321]. В этих работах исследованы причины явления насыщения концентрации радикалов и показано, что на/сыщение обусловлено уничтожением радикалов под действием излучения. Одновременно изучены закономерности миграции энергии при облучении полипептидов и белков. [c.347]



Смотреть страницы где упоминается термин Электронные спектры биополимеров: [c.313]    [c.6]    [c.186]    [c.13]   
Смотреть главы в:

Молекулярная биофизика -> Электронные спектры биополимеров

Биофизика Т.1 -> Электронные спектры биополимеров


Биофизика Т.1 (1997) -- [ c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Биополимеры

Спектры электронные



© 2025 chem21.info Реклама на сайте