Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронного парамагнитного метки

    Спектры электронного парамагнитного резонанса (ЭПР) и спиновые метки, т. 1, стр. 348 Использование изотопных меток при изучении цикла трикарбоновых кислот, т. 2, стр. 322 " С и цикл Кальвина, т. 2, стр. 477 Метод радиоиммунологического анализа, т. 3, стр. 318 [c.380]

    Спектры электронного парамагнитного резонанса (ЭПР) и спиновые метки [c.348]


    Еще более быстрыми являются релаксационные методы, развитые преимущественно в работах Эйгена [14] с соавторами, которые позволяют измерять реакции, подобные переносу протона, с константами скоростей порядка 10 ° л-моль -с- . Эти методы сводятся к наблюдению за возвращением системы к равновесию (релаксации) после внезапного возмущения они ограничены в основном быстротой возмущения системы. Использование ЯМР [15] и метода температурного скачка позволяет достичь области временной постоянной порядка 10 с. Электронный парамагнитный резонанс (ЭПР) — еще более быстрый метод (10 с), но требует, как правило, специального введения спиновой метки в фермент или субстрат. [c.455]

    Молекулы АТ обладают некоторой гибкостью, т. е. способностью к конформационным превращениям. С помощью поляризованной люминесценции комплексов IgG с люминесцирующими красителями были установлены времена вращательной релаксации т, оказавшиеся порядка 50 не (см. 5.5). Эти значения соответствуют броуновскому вращательному движению не всей молекулы белка, но малых ее участков, т. е. указывают на гибкость молекулы белка. По-видимому, домены обладают подвижностью. Взаимодействие гаптена с АТ приводит к заметному увеличению X, что указывает на изменение конформации АТ. Было установлено, что при образовании комплекса АТ—А Г конформация АГ также меняется. Данные оптических измерений подтверждаются исследованиями спектров электронного парамагнитного резонанса антител, содержащих парамагнитные метки. [c.126]

    В последние годы в активе молекулярной биологии появились методы и подходы, основанные на использовании новых молекулярных датчиков — стабильных нитроксильных радикалов, связанных ковалентно с макромолекулами (спиновые метки) или введенных в качестве ничтожных примесей в исследуемую систему (спиновые зонды). Вращательная и трансляционная подвижность таких радикалов, измеренная с помощью техники электронного парамагнитного резонанса, дает информацию о структуре, кон-, формационной динамике, микрорельефе и топологии белков, ферментов, мембран и других биомолекул и биологических структурных элементов. Спиновые метки служат своеобразными сейсмическими станциями, чутко регистрирующими малейшие изменения биологических структур при их функционировании или при различных воздействиях на них. [c.3]

    Катализаторы исследуются также спектроскопическими и термохимическими методами. Большое значение имеют методы измерения электропроводности, контактной разности потенциалов, электронного парамагнитного резонанса и другие физические методы. Все более важную роль приобретают радиохимические методы с применением меченых атомов, присутствие которых обнаруживается особыми приборами-счетчиками. При приготовлении катализатора с помощью меченых атомов можно проследить, не захватывает ли он хотя бы самое ничтожное количество посторонних химических примесей, выяснить, насколько подвижны атомы и ионы самого катализатора. Радиохимические мО тоды оказывают неоценимую услугу при изучении механизма каталитических процессов. Вводя радиоактивную метку — атомы радиоактивных изотопов — в одно из реагирующих веществ, можно проследить, в какой из образующих продуктов реакции попала эта метка, и получить сведения о протекании тех или иных стадий сложного каталитического процесса. [c.207]


    Характерной особенностью ионитов, содержащих ароматические кольца, является наличие стабильных свободных радикалов, неспаренный электрон которых частично локализован на функциональных группах. Эти радикалы являются удобными парамагнитными метками для изучения природы взаимодействия противоионов и молекул растворителя с полимерной матрицей, а также подвижности ионов и молекул вблизи активных групп ионитов [113]. Этим методом можно определить степень ковалентности связи в паре функциональная группа — [c.150]

    Вместе с тем существует и небольшая примесь изотропного взаимодействия. Па рис. Х.11 приведен спектр ЭПР парамагнитной метки на лизоциме. Так как СТС и -фактор в спектрах ЭПР нитроксильных радикалов анизотропны, то броуновская диффузия влияет на форму спектра. Величина расщеплений СТС будет зависеть от углов между осями парамагнитного фрагмента и направлением поля. Вращение нитроксильного фрагмента относительно поля изменяет положение линий в поле. В случае предельно быстрых вращении Vвp с происходит усреднение всех ориентаций и спектр представляет собой три эквидистантные линии одинаковой интенсивности, что в данном случае обусловлено изотропным взаимодействием неспаренного электрона с ядром азота. Однако уже в области вращении с частотами [c.277]

    Изучение подвижности жирнокислотных цепей фосфолипидов и самих липидных молекул в биологических мембранах осуществляется в настоящее время главным образом методами радиоспектроскопии электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР). В первом из этих методов измеряют сигналы ЭПР, даваемые спиновыми метками и спиновыми зондами. Основу спиновых меток и зондов составляет стабильный свободный иминоксильный радикал, имеющий такую структуру  [c.115]

    За поведением липидов в двух монослоях мембраны можно проследить, введя в отдельные молекулы в качестве метки нитро-ксильную группу, являющуюся стабильным органическим свободным радикалом (рис. 6-2). Такие спин-меченые липиды можно изучать методом электронного парамагнитного спинового резонанса (ЭПР) непосредственно в живых клетках. Перед тем как ввести спин-меченые липиды в мембраны клеток, смесь меченых и немеченых фосфолипидов обрабатывают ультразвуком с целью получения маленьких липидных везикул. При добавлении последних к суспензии целых клеток в определенных условиях везикулы сливаются с клетками, перенося меченые лиганды в их плазматическую мембрану. [c.49]

    У большинства биологически важных молекул неспаренные электроны отсутствуют. Однако при исследовании структуры молекул в определенные положения вводят стабильные радикалы или ионы редкоземельных элементов (спиновые метки) или же проводят замещение диамагнитных ионов, таких, например, как магний, на парамагнитные, такие, как марганец. Применение этих методик изложено в главе 2. Изменение значений времени релаксации за счет введения парамагнитных веществ составляет основу использования этих веществ в качестве контрастных средств в ЯМР-томографии (глава 4). [c.41]

    Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми метками. Липосомы подвергались воздействию аскорбиновой кислоты, вследствие чего неспаренные электроны на молекулах пропадали парамагнитные молекулы становились диамагнитными, что можно было обнаружить по уменьшению площ ади под кривой спектра ЭПР. [c.22]

    Далеко не все биологические молекулы обладают неспаренным электроном, но некоторые белки содержат парамагнитные ионы металлов, которые играют важную роль в их функционировании и в формировании структуры. При исследовании таких белков ЭПР оказывается особенно ценным методом. В спектрах протонного резонанса сигналы от множества ядер располагаются в относительно узком спектральном интервале. В спектрах ЭПР проблема наложения разных сигналов устраняется автоматически, поскольку имеется лишь один источник сигналов — ион металла вместе с его окружением. В сущности этот ион является естественной меткой. [c.174]

    ЭПР-спектроскопия широко применяется для исследования объектов, в которых практически нет собственных неспаренных электронов. В изучаемую систему вводятся так называемые метки, или парамагнитные зонды,— вещества, которые содержат неспаренные электроны. В молекулах меток содержится атом азота с неспаренным электроном на 2ря-орбитали. Изучая спектры ЭПР, полученные в микроволновом диапазоне частот электромагнитных волн, можно судить о переносе меток через мембрану, получать информацию о характере вращения молекул и изучать фазовые переходы в мембранных системах под действием различных факторов. Однако при интерпретации результатов, полученных методом ЭПР-спектроскопии, следует учитывать возможные изменения свойств объекта, которые могут произойти при введении в него метки. [c.124]


    СПИНОВАЯ ПЛ0ТНОСТЬ, M. Электронная плотность. СПИНОВОГО ЗОНДА МЁТОД (метод парамагнитного зонда), метод исследования мол. подвижности и разл. структурных превращений в конденсир. средах по спектрам электронного парамагнитного резонанса (ЭПР) стабильных радикалов (зондов), добавленных к исследуемому в-ву. Если стабильные радикалы химически связаны с частицами исследуемой среды, их называют метками и говорят о методе спиновых (или парамагнитных) меток. В качестве зондов и Меток используют гл. обр. нитроксильные радикалы, к-рые устойчивы в широком интервале т-р (до 100-200 °С), способны вступать в хим. р-ции без потери парамагнитных св-в, хорошо растворимы в водных и орт. средах. Наиб, часто применяют радикалы ф-лы I. [c.399]

    В методе электронного парамагнитного резонанса (ЭПР фиксируется перегиб на зависимости ширины линии в спектре ЭПР радикалов или парамагнитных зондов, введенных в полимер, от температуры, Исследования ведут на частотах 10 -10 Гц с использованием стабильных радикалов, в концентрациях не более 10 моль/л. В зависимости от способа ввода радикалов различают спиновые зонды - радикалы, растворенные в полимере, и спиновые метки - радикалы, химически связанные с макромолекулами. Считается, что зонды юкализуются в аморфной фазе, а метки могут присоединяться по всей длине или по концам макромолекулы, что позволяет разделить, идентифицировать движение отдельных участков цепей. [c.385]

    Примеры использования природной флуоресценции полипептидов для описания их конформационного поведения приведены в предыдущих разделах. В развитие этого подхода предложено вводить ковалентно связанные информирующие группы (флуорофо-ры [64, 65] илн спиновые метки [66] — группировки, содержащие локализованные неспаренные электроны), что позволяет исследовать соседние с этими группами участки с помощью флуоресцентной спектроскопии и электронного парамагнитного резонанса (ЭПР), соответственно. В разд. 23.7.3.3 приведены ссылки на работы по аналогичным исследованиям меченых пептидов методом КД. [c.442]

    Метод спиновых меток оказался весьма эффективным для изучения структуры биологических мембран и конформационных явлений в мембранах [263, 264]. Весьма перспективно изучение ядерной релаксации в биополимерах, содержащих парамагнитную метку. Время релаксации зависит от взаимодействия спинов ядра и электрона и, следовательно, от расстояния между ними (Т пропорционально г ). Тем самым, можно получить информацию о геометрии молекулы и о ее движениях [265]. В работах [266] изучались спектры ЭПР и ЯМР алкогольдегидроге-назы, меченной аналогом никотинамидадениндинуклеотида. Оказалось, что метка конкурирует с НАД-Н в месте связывания ферментом, сильно иммобилизуется белком, резко изменяет время релаксации протонов воды, причем величина Т сильно зависит от концентрации спирта. Установлено место связывания спирта этим ферментом и оценены кинетические и геометрические характеристики системы. [c.346]

    Очень перспективным методом исследования может при этом явиться электронный парамагнитный резонанс ЭПР. ЭПР-спектр иминоксильного радикала достаточно чувствителен к протонному окруженшо его и дает возможность регистрировать изменение этого окружения [3] Это свойство имяноксильной метки дает ей преимущество перед другими способами мечения стероидной молекулы — изотопным и люминесцентным. Необходимым условием подобного использования парамагнитных моделей биологически активных стероидов является расположение метни на таком расстоянии от активного центра лиганда, чтобы, с одной стороны, она не мешала взаимодействию этого центра с центром рецептора и, с другой стороны, чтобы Спектр радикала отражал происходящие в активном центре изменения. Желательным является также фнксированпость ориентации самого радикала, что снижает разброс значений, связанных с его вращением. [c.108]

    Хотя эти данные, по-видимому, свидетельствуют против широко признанной роли цинка в этой металлдегидрогеназе, т. е. против образования комплекса фермент — Zn + — НАД (НАДН) [121], они недостаточны для определения истинной каталитической роли этого металла. Результаты, полученные Милдваном и Винером [122, 141], могут быть интерпретированы в пользу образования комплексов фермент — Zn + — субстрат [8], хотя, учитывая имеющиеся данные, такая интерпретация является довольно рискованной. В этих исследованиях при использовании спин-меченого аналога АДФ-рибозы было определено расстояние между неспаренньш электроном спиновой метки и протонами субстрата [121]. Если бы Zn + в центре связывания металла можно было заменить на парамагнитный ион металла, то можно было бы методом ЭПР измерить степень спин-спинового взаимодействия и, таким образом, определить расстояние между спиновой меткой и связанным металлом [72, 74а] (разд. 2.2). Опубликовано сообщение о замене Zп + на Со + в алкогольдегидрогеназе из печени, и при этом Со +-фермент проявлял каталитическую активность [90]. Аналогичная замена Zn2+ на Мп + может непосредственно продемонстрировать наличие мостикового комплекса Е — М + — субстрат изучением скоростей ядерной магнитной релаксации протонов субстрата (разд. 2.3). Возможно использование ЯМР С1 для изучения влияния субстратов и коферментов на свойства связанного цинка в нативном ферменте [143]. Этот метод был использован для изучения связанного Zn2+ в нируваткиназе [144], и он является одним нз немногих методов изучения окружения диамагнитного атома цинка. [c.462]

    Другая возможность изучения ионообменных материалов методами ЭПР связана с присутствием стабильных свободных радикалов в ионитах. Стабильные свободные радикалы были обнаружены практически во всех ионитах, полимерная матрица которых содержит ароматические звенья. Концентрация этих радикалов зависит от ионной формы, pH и возрастает с уменьшением влагосодерн а-ния. Неспаренные электроны радикалов частично делокализованы на функциональных группах, и по этой причине радикалы в ионитах являются хорошими парамагнитными метками, позволяющими исследовать локальноеокрунхение функциональных грунн методами ЭПР [54, 55]. Взаимодействие противоион—ионогенная группа изменяет константы СТС и величины gf-факторов радикалов, и на основе анализа параметров спектра ЭПР можно получать информацию о степени ковалентности связи противоион—ионогенная группа [54]. Однако форма спектра ЭПР радикалов в основном определяется взаимодействием неспаренных электронов с полимерным каркасом, а влияние окружения проявляется лишь в незначительном изменении параметров спектра. Следовательно, использование радикалов в ионитах в качестве парамагнитных меток требует применения новых методов исследования, которые позволили бы выделить вклад от ионов и молекул, расположенных в непосредственной близости от функциональной группы, в электронный парамагнитный резонанс радикалов. [c.101]

    Для измерения подвижности отдельных липидных молекул и их частей используются разнообразные методы. Так, к полярной голове молекулы липида можно присоединить спиновую метку , например питроксильпую группу (= N — О), имеющую песпареппый электрон. Спин этого электрона порождает парамагнитный сигнал, обнаруживаемый методом электронного парамагнитного резонанса (ЭПР) (принципы этого метода сходны с принципами ядерного магнитного резонанса. ЯМР). Этот метод позволяет легко определить движение и ориентацию в бислое подобного спип-мечеппого липида. Такие исследования показывают, что липидные молекулы в синтетических мембранах чрезвычайно редко перескакивают из одного монослоя мембраны в другой. Любая индивидуальная молекула липида осуществляет подобный пере- [c.352]

    Метод парамагнитных меток может быть использован для исследования структуры гетерогенных металлсодержащих катализаторов на носителе. Принцип его заключается в том, что активные металлические центры катализатора модифицируются в результате обработки раствором нитроксиль ного радикала, обладающего наряду с неспаренным электроном другими функциональными группами, способными связываться с ионами металлов. В результате диполь-дипольного взаимодействия парамагнитных центров можно наблюдать расщепление, уширение или изменение формы линии в спектре ЭПР. Известно несколько методов, позволяющих рассчитать расстояния между парамагнитными метками по величине диполь-дипольног взаимодействия. В магнитно-разбавленных образцах взаимодействие может привести к расщеплению линии. Если в спектре выделяется компонента, ширина которой изменяется при сближении парамагнитных центров, то расстояние можно вычислить по формуле  [c.203]

    С помощью спиновой метки было проведено исследование факультативного термофила из рода Ba illus, штамм Т1 (ВТ1) ( han et al., 1973). Используя в качестве зонда нитроксид стеариновой кислоты, авторы обнаружили включение этой жирной кислоты в мембранную фракцию. Клетки, выращенные при 55°С, содержали в процентном отношении больше жирных кислот изоряда, чем клетки, выращенные при 37°С, тогда как у последних была выше доля представителей анти- зо-ряда. Мембраны клеток, выращенных при 37°С, характеризовались высокой скоростью перехода в жидкое состояние при повышении температуры, что согласуется с данными о более высоких температурах плавления жирных кислот 30-ряда. Исследования с использованием метода электронного парамагнитного резонанса показали, что [c.252]

    Радиоспектроскопия. Синтез стабильных нитроксид-ных (иминоксильных) радикалов с различными реакционноспособными группами позволил использовать их, в частности, для метки гаптенов. Нитроксидные радикалы содержат неспаренный электрон и могут быть охарактеризованы методом электронно-парамагнитного резонанса (ЭПР). Спиновая метка была впервые использована Л. Стриером и О. Гриффитом (L. Stryer, О. Griffith, 1965) для получения иминоксильных производных дини-тробензола  [c.249]

    Парамагнетизм обусловлен нескомиенсированностью спина электрона, принадлежащего радикалу, образующемуся при диссоциации молекул [143, 144]. Помимо радикалов нефтяного происхождения используются парамагнитные (спиновые) метки-радикалы, вступающие в химические связи с молекулами нефтяных систем и сохраняющие при этом одиночный электрон. Наи- [c.99]

    Микроокружение аромвтических остатков в белках исследуется методом флуоресценции. Для этих целей используются также анв-лиз спектров КД в области 250 — 300 нм и дифференциальные УФ-спектры, получаемые при изменении pH водной среды, температуры или состава растворйтелей. По спектрам КД следят за кон-формационными превращениями белкоа и пептидов а процессе их функционирования, а также проверяют, сохранилась ли натианая конформация при изменении условий окружающей среды или при химической модификации природного соединения. Для изучения конформации белков, содержащих парамагнитные центры — такие, как гем в гемоглобине или спиновые метки (различные группы, имеющие неспаренный электрон), введенные с помощью хими- [c.112]

    В ЭПР-спектроскопии фазовое состояние замороженных растворов и молекулярную подвижность в них обычно исследуют с использованием в качестве парамагнитного зонда стабильных ради-. калов (например, азотокисного радикала-метки 2,2,6,6-тетраметил-4-оксипиперидин-1-оксила). Применение стабильных радикалов для исследования молекулярной подвижности основано на зависимости ширины линий спектров ЭПР от степени вращательной и поступательной подвижности этих радикалов [212, 570, 571]. Вращательную подвижность можно определить из спектров ЭПР разбавленных растворов радикалов. Из теории ЭПР известно [572], что анизотропные сверхтонкое электронно-ядерное и спин-орбитальное взаимодействия в радикале зависят от взаимной ориентации направлений внешнего магнитного поля и орбитали неспаренного электрона. Вращение радикала модулирует эти взаимодействия, вызывая флуктуации локальных магнитных полей и уширяя линии ЭПР. Это уширение зависит от характера орбитали неспаренного электрона (анизотропии константы СТВ и g-фактора) и определяется временем корреляции тк. Время корреляции является характеристикой. интенсивности вращательного движения радикала. Порядок этой величины соответствует времени, которое необходимо радикалу, чтобы изменить ориентацию на угол около одного радиана. [c.179]

    Основной экспериментальный подход состоит в том, чтобы, изучая определенные физические параметры (люминесцентные, парамагнитные) специально внедренных во внутрь белка низкомолекулярных соединений, получить характеристику подвижности окружающей их среды, т. е. характеристику внутримолекулярной подвижности белка. Люминесцентные методы позволяют измерять внутримолекулярную подвижность белка, изучая, как зависит от температуры положение максимума люминесценции введенной в белок метки максимума либо собственной люминесценции триптофана белка. При поглощении кванта света люминесцирующей молекулой один из двух л-электронов переходит на возбужденный синглетный уровень 51 (рис. 9.1), а вся молекула при этом переходит в синглетное возбужденное состояние. При переходе в возбужденное состояние запас колебательной энергии молекулы кратковременно повышается, а затем за время 10 "- 10" с происходит диссипация колебательной энергии и релаксация на нижние колебательные подуровни того же самого электронного состояния 51. В возбужденном состоянии 51 молекула живет т = 10 - 10 с, после чего она может вновь вернуться на основной уровень 5о либо с испусканием кванта флуоресценции, либо безызлучательно, рассеивая в тепло энергию электронного возбуждения. За время т существования состояния 51 спин электрона на уровне 51 может изменить свою ориентацию на противоположную. Тогда он станет параллельным спину оставшегося -ранее спаренного с ним п электрона. В этом случае происходит переход молекулы в три-плетное состояние 51 —> Г, в котором спины электронов на 5о-и Г-уровнях параллельны (рис. 9.1). Переход в основное состояние Г —> 5о теперь также требует переориентации спинов вновь на антипараллельную. Поэтому вероятность Г -> 5о перехода мала, а время жизни состояния Т велико по сравнению с состоянием 51 и составляет 10" - 10 с и [c.101]

    Спектр ЭЛ ктронного парамагнитн го ре нанса (ЭПР спиновых меток) представ яст соб и триплет (рис. 5, /, II) Соотношение Ш1 р шы этих трех линий определяется усреднением анизотропии g фактора и сверх OHKOIO взаимодеиствия спинов ядра азота и неспаренного электрона N—О-группы метки в результате ее вращения. В некоторых случаях спектр ЭПР я ляется суперпозициеи двух спектров, соответствующих двум состояниям метки с ра личнои подвижн стью (ри. 5, III) [c.15]


Библиография для Электронного парамагнитного метки: [c.401]   
Смотреть страницы где упоминается термин Электронного парамагнитного метки: [c.4]    [c.208]    [c.676]    [c.129]    [c.352]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.362 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Электронный парамагнитный

Электронный парамагнитный резонанс спиновая метка



© 2024 chem21.info Реклама на сайте