Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные методы получения кинетических данных

    Синтез рациональной САУ может быть произведен лишь на основе длительных наблюдений за функционированием действующих очистных сооружений. Однако предпринимается немало попыток изучать структурно-функциональные свойства объекта с помощью математического моделирования. Можно отметить три основных направления, используемых в математическом моделировании технологических процессов вообще и рассматриваемых здесь процессов в частности. При аналитическом методе математическая модель строится на основании всестороннего исследования механизма процесса и составляется нз уравнений материальных и теплового балансов для каждой фазы процесса, а также из уравнений, отражающих влияние гидродинамических факторов и кинетики реакций для каждого компонента. При этом необходимо учитывать коэффициенты диффузии, теплообмена, кинетические константы реакций и т. п. Для определения этих коэффициентов и констант требуется комплекс сложных и точных лабораторных и промышленных исследований. Математическая модель может быть синтезирована также экспериментально. Методами современной математической статистики находят формальное математическое описание процесса в условиях, когда теория процесса разработана недостаточно полно и нельзя дать более или менее точное аналитическое описание. Это новый, кибернетический подход к задаче исследователь устанавливает функциональные связи между входными и выходными параметрами процесса, абстрагируясь от сложных и плохо изученных явлений, происходящих в процессе. Кроме того, существует третий метод составления математических описаний — экспериментально-аналитический, упрощающий задачу определения численных значений параметров уравнений статики и динамики процесса. В этом случае исходные уравнения составляются на основе анализа процессов, наблюдаемых в объекте, а численные значения параметров этих уравне.чий определяются по экспериментальным данным, полученным непосредственно на объекте. [c.169]


    С другой стороны, интегральные проточные реакторы по условиям своей работы близки к промышленным аппаратам и удобны для освоения промышленных процессов в небольших масштабах. Это обстоятельство отнюдь не маловажно при проведении прикладных исследований, когда кроме чисто химических и расчетных данных необходимо выявить технологические особенности процесса, получить образцы целевого продукта, сведения о длительности работы катализатора и качестве целевого продукта и т. п. Поэтому стадия модельной установки с проточным реактором является обязательной в разработке промышленных гетерогенно-каталитических процессов. Целесообразно использовать эти реакторы для получения данных по кинетике для расчета и проектирования промышленных реакторов. Одним из таких приемов является вышеупомянутый метод экспериментального поиска оптимума процесса на реакционной трубке промышленного размера. Там, где это непригодно, можно применить различные приемы анализа кинетических закономерностей. Хотя эти методы во многом несовершенны, однако при применении современной машинной вычислительной техники постановка опытов на проточных интегральных реакторах может дать большой объем информации, позволяющий составить математическое описание процесса с большой степенью надежности и тем самым решить задачу перехода от ла [c.345]

    Как указывалось выше, при анализе результатов, полученных хроматографическими методами, следует учитывать, что катализатор в промежутках между импульсами подвергается частичной регенерации потоком газа-носителя, вследствие чего стационарное состояние катализатора может и не достигаться. В принципе, результаты кинетических расчетов, полученные на основе хроматографических данных, могут отличаться от констант, соответствующих стационарному состоянию катализатора (см., например, стр. 193), но это скорее достоинство, а не недостаток. Хроматографические данные представляют значительный интерес, поскольку они характеризуют наиболее активные в каталитическом отношении центры поверхности. Сопоставление результатов, полученных в хроматографических условиях, с результатами, полученными в проточных и проточно-циркуляционных системах, может дать дополнительно существенную информацию о кинетике и механизме каталитического процесса. Мы уже указывали выше, что эффективность кинетических исследований значительно повышается при проведении опытов по определенной стратегии. Этому вопросу посвящен специальный раздел математической статистики, называемый планирование экстремальных экспериментов . Поэтому прежде чем перейти к изложению экспериментального материала, мы посвятим следующий раздел краткому изложению некоторых основных идей статистического планирования эксперимента. [c.301]


    Из других применяемых в электрохимических исследованиях методов ценные сведения о природе катодной поляризации может дать осциллографическое изучение изменения потенциала электрода во времени при постоянной плотности поляризующего тока. В частности, особое значение здесь имеет определение переходного времени, в течение которого концентрация разряжающихся ионов у поверхности катода приближается к нулю и возникает предельный ток. Экспериментальное определение взаимосвязи между величиной переходного времени и плотностью поляризующего тока, а также сопоставление полученных результатов с теоретически обоснованными закономерностями дают возможность выявить как диффузионные, так и кинетические ограничения скорости катодной реакции [86, 87]. [c.20]

    Ценность методов с непрерывной разверткой для изучения кинетики сложных электрохимических процессов заключается в основном в той легкости, с которой можно получить полярограммы ток — потенциал. Это обеспечивает четкое представление о поведении системы, что облегчает интерпретацию результатов, по крайней мере в качественной форме, путем проведения нескольких простых измерений для ряда скоростей разверток. Кроме того, эти методы часто пригодны для исследования электрохимического поведения продуктов реакции и реагирующих веществ при помощи простых циклических полярограмм [191, 192]. Изменение формы полярограмм со скоростью развертки, концентрации и температуры может в благоприятных случаях дать простую информацию о механизме реакции. Другие методы, особенно одно- и многоступенчатые методы наложения потенциала, как ни много дают информации (причем обычно в таком виде, который легко позволяет проводить количественный анализ), не позволяют составить качественную картину поведения системы — для этого требуется большое число экспериментальных данных и более сложных исследований. Сильная комбинация получается при сочетании опытов с непрерывным наложением потенциала, дающих качественную картину и некоторые количественные данные, с последующими измерениями со ступенчатым наложением потенциала, выполненными с учетом ранее полученной информации, дающие кинетические величины. Чтобы определить адсорбированные частицы, полезно применять сочетания методов с непрерывным наложением потенциала и гальваностатических методов заряжения. Однако это не значит, что количественные данные не могут быть получены на основе измерений с непрерывным наложением потенциала действительно, для ряда механизмов соответствующая теория хорошо развита, однако ту же информацию можно обычно получить гораздо легче при помощи других методов. Оказалось, что методы с непрерывным наложением потенциала особенно полезны при обнаружении промежуточных частиц [191, 192] (в частности, когда последние находятся в адсорбированном состоянии), которые при электролизе часто присутствуют в очень небольших концентрациях. Этому вопросу уделяется большое внимание при изучении окисления органического топлива на электродах-катализаторах [187, 193— 196]. [c.332]

    Из всего сказанного следует, что одной из предпосылок решения вопроса о химическом механизме реакции должно быть выяснение природы тех промежуточных веществ, которые являются активными участниками входящих в механизм реакции элементарных процессов. Применяющиеся в настоящее время экспериментальные методы обнаружения химически неустойчивых (лабильных) промен уточных веществ и методы измерения их концентрации будут рассмотрены в следующем параграфе. Здесь же ограничимся рассмотрением общего вопроса о том, в какой мере особенности химического механизма реакции, предполагаемого известным, отображаются в макрокинетическом законе реакции. Этот вопрос частично уже затрагивался в предыдущей главе в связи с обсуждением возможного механизма сопряженных и автокаталитических реакций. Из этого обсуждения следовало, что однозначная связь макрокинетического закона реакции с ее механизмом, вообще говоря, не имеет места. В частности, мы указывали, что кинетический закон ряда сложных цепных реакций, иду-1ЦИХ при участии лабильных промежуточных веществ — свободных атомов и радикалов, при определенных условиях выражается простыми формулами, ни в какой мере не отображающими сложного механизма реакции. Таковы, например, реакции горения и медленного окисления водорода, кинетический закон которых может быть выражен простыми авто-каталитическими формулами, не отвечающими сложному механизму этих реакций. Из этих, как и из других аналогичных примеров, следует, что макрокинетический закон реакции в общем случае не может дать правильного суждения об истинном химическом механизме сложной реакции. Более того, часто один и тот же закон может быть получен из различных предполагаемых механизмов данной реакции. [c.63]


    Раздел Энзимология рассчитан на студентов, уже иознакомиз-" шихся с некоторыми современными методами химии белка определением концентрации белка, хроматографией, электрофорезом и др. Основная цель его состоит в том, чтобы дать возможность студентам приобрести навыки экспериментальной работы, необходимые для начинающего энзимолога. В ходе практикума студенты осваивают методы выделения и очистки какого-либо фермента, а также изучают свойства полученного препарата. В связи с этим приводятся общие указания по работе с ферментами, способам их очистки, правилам определения каталитической активности и кинетических свойств. Во второй части раздела описываются методы выделения ферментов из пекарских дрожжей и животных тканей (скелетных мышц, печени). Поскольку современные методы очистки ферментов включают большое разнообразие приемов, в ряде случаев для получения одного и того же фермента дается описание 2—3 методик, которые могут быть использованы в соответствии с уровнем оснащенности лаборатории. Кроме того, для ферментов из разных источников приводятся различные методы выделения. [c.196]

    Для суждения о наличии гелевого лимитирования прежде всего устанавливают, влияет ли концентрация ионов в растворе и перемешивание на кинетику ионного обмена [101—104]. Используется также анализ экспериментальных кинетических кривых [И, 97, 104, 105], когда линейная зависимость степени завершенности процесса от квадратного корня времени указывает на лимитирование диффузии ионов в зерне. Дополнительным доказательством лимитирования той или иной стадией является анализ критериев Адамсона—Гроссмана—Гельфериха [105, 106] и критерий Био [104]. Наконец, общепринятым способом выявления лимитирующей стадии является опыт с прерыванием контакта фаз. Если продолжение эксперимента после восстановления контакта фаз приводит к излому кинетической кривой, то тем самым выявляется существенное в.чияние диффузии ионов в зернах ионитов на скорость установления равновесия. Следует, однако, подчеркнуть, что для строгого анализа кинетики ионообменных процессов необходимо сопоставлять результаты, полученные с помощью ряда методов. чимитирующей стадии. Так, рассмотрение одного лишь опыта с прерыванием контакта фаз может дать ошибочное заключение о соотношении вклада внешней (пленочной) и внутренней (гелевой) диффузии. [c.34]


Смотреть страницы где упоминается термин Экспериментальные методы получения кинетических данных: [c.201]   
Смотреть главы в:

Массообменные процессы химической технологии -> Экспериментальные методы получения кинетических данных

Моделирование сушки дисперсных материалов -> Экспериментальные методы получения кинетических данных




ПОИСК





Смотрите так же термины и статьи:

Кинетические методы



© 2024 chem21.info Реклама на сайте