Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемиосмотическая теория Митчелл

    Широкое признание получила хемиосмотическая теория Митчелла (1961). Она исходит из трех постулатов. [c.432]

    Позднее были получены экспериментальные данные о существовании еще одной формы энергии, также используемой клеткой для совершения разного рода работы. Открытие этой формы энергии принадлежит английскому биохимику Питеру Митчеллу (Р. Mit hell), разработавшему в 60-х гг. хемиосмотическую теорию энергетического сопряжения, объясняющую превращение (трансформацию) энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ. П. Митчелл постулировал, что при переносе электронов по окислительно-восстановительной цепи, локализованной в мембранах определенного типа, называемых энергопреобразующими, или сопрягающими, происходит неравномерное распределение Н+ в пространстве по обе стороны мембраны (рис. 25). Предложенная им модель предусматривает определенное расположение переносчиков электронов в сопрягающей мембране, например ЦПМ, которые могут быть погружены в глубь мембраны или локализованы у наружной и внутренней ее поверхностей, так что образуют петли в цепи переноса электронов. В каждой петле (у прокариот электронтранспортные цепи в сопрягающих мембранах могут формировать разное число петель ) два атома водорода движутся от внутренней стороны ЦПМ к наружной с помощью переносчика водорода (например, хинона). Затем два элект-рона возвращаются к внутренней стороне мембраны с помощью со- [c.86]


    Хемиосмотическая теория сопряжения окисления и фосфорилирования. Эта гипотеза предложена в 1961 г П. Митчеллом причем значительный вклад в ее доказательство был сделан В. П. Скулачевым с соавторами. Согласно этой теории, фактором, сопрягающим окисление с фосфорилированием, является электрохимический, протонный потенциал АцН , возникающий на внутренней мембране митохондрий в процессе транспорта электронов. При этом предполагается, что мембрана непроницаема для ионов, особенно протонов, их транслокация с внутренней стороны мембраны (из матрикса) на наружную сторону внутренней мембраны митохондрий осуществляется за счет процесса окисления в дыхательной цепи, т. е. транспорта высокоэнергетических электронов. Возникающий электрохимический потенциал АцН+ является аддитивным он складывается из химического потенциала АрН и электрического со знаком (+) на наружной стороне мембраны (Avj/)  [c.203]

    Среди множества гипотез о механизме сопряжения фосфорилирования АДФ и дыхания заслуживает внимания хемиосмотическая теория, разработанная английским биохимиком П. Митчеллом (1961 г.). По мнению П. Митчелла, энергия переноса электронов и протонов через дыхательную цепь первоначально сосредотачивается в виде протонного потен циала, или электрохимического градиента концентраций ионов Н , возникающего при их переносе через клеточную мембрану компонентами дыхательной цепи. Протонный потенциал А Ян+ создается двумя компонентами осмотическим, возникающим вследствие разности концентраций протонов (АрН) по сторонам мембраны, и электрическим, обусловленным разностью электрических потенциалов (Аф) на поверхностях внутренней мембраны митохондрий  [c.325]

    Позднее были получены экспериментальные данные о существовании еще одной формы энергии, также используемой клеткой для соверщения разного рода работы. Открытие этой формы энергии принадлежит английскому биохимику Питеру Митчеллу (Р. Mit hell), разработавщему в 60-х гг. XX в. хемиосмотическую теорию энергетического сопряжения, объясняющую превращение (трансформацию) энергии, освобождающейся при электронном [c.100]

    Механизм окислительного фосфорилирования. Существует несколько теорий, объясняющих механизм тканевого дыхания (окисления) и его сопряжения с фосфорилированием. Наибольшее подтверждение получила теория, разработанная английским биохимиком П. Митчеллом (1961 — 1966). Согласно этой теории, получившей название хемиосмотическая , или протондвижущая , свободная энергия движущихся по дыхательной цепи электронов используется для перекачивания протонов (Н ) через внутреннюю мембрану митохондрий из матрикса во внутримембранное пространство. Это приводит к изменению числа протонов водорода на наружной и внутренней мембранах митохондрий, в результате чего возникает электрохимический градиент протонов водорода (ЛрН) на мембране (рис. 21). За счет протонного градиента ионы водорода возвращаются снова в митохондриальный матрикс через каналы, образованные специальным белком Рц и ферментом Н -АТФ-синтетазой. При этом энергия протонного потенциала используется для синтеза АТФ с участием Н -АТФ-синтетазной системы. Синтез АТФ возможен только при определенной величине протонного потенциала. Если его величина на мембране мала, то АТФ-синтетаза будет функционировать как АТФ-аза, т. е. катали- [c.58]


    Главные этапы развития биохимии связаны с именами ряда ученых, многие из которых работали в России А.Н.Баха (перекис-ная теория биологического окисления), В.И.Палладина (теория дегидрирования), В.А.Энгельгарда (открытие АТФ), А.И.Опарина (гипотеза возникновения жизни), А.Н.Белозерского (исследование нуклеиновых кислот), К.Функа (витамины, авитаминоз), Г.Эмбдена и К.Мейергофа (механизм гликолиза), Г.Кребса (цикл трикарбоновых кислот), А.Сцент-Дьёрди (основы биоэнергетики), А.Ленинджера (окислительное фосфорилирование), П. Митчелла (хемиосмотическая теория) и многих других современных биохимиков. [c.8]

    Хемиосмотическая гипотеза, сформулированная английским биохимиком Питером Митчеллом, исходит из совершенно иного, нового принципа. Постулируется, что перенос электронов сопровождается выкачиванием ионов Низ матрикса через внутреннюю митохондриальную мембрану в наружную водную среду. Вследствие этого между двумя сторонами внутренней митохондриальной мембраны возникает градиент концентрации ионов Н (трансмембранный градиент). Синтез АТР, требующий затраты энергии, осуществляется именно за счет осмотической энергии, присущей этому градиенту. Можно думать, что именно хемиосмотическая теория наиболее точно отражает организуюхций принцип окислительного фосфорилирования. Рассмотрим некоторые характерные особенности этого процесса, свидетельствующие в пользу хемиосмотической гипотезы. [c.528]

    Великобритания Митчелл П. Исследования процесса переноса энергии в клетках и разработка хемиосмотической теории [c.542]

    Создатель этой теории П. Митчелл обосновал концепцию сопрягающей мембраны, обладающей свойствами электрического изолятора. В рамках хемиосмотической теории не возможна неконтролируемая утечка через мембрану даже протонов, не говоря уже о таких крупных молекулах, как ДНК и белки. Выражением признания этой концепции стало присуждение П. Митчеллу Нобелевской премии по химии в 1978 г. Экспериментальное обоснование и дальнейшее развитие этой теории во многом обязаны исследованиям В.П. Скулачева и др. [c.56]

    В 60—70-е годы достигнуты большие успехи в изучении биоэнергетики. А. Ленинджер установил, что процессы биологического окисления протекают в митохондриях — "атомных станциях клетки". П. Митчелл сформулировал хемиосмотическую теорию образования АТФ, С.Е. Северин и В.П. Скулачев определили роль транспорта электронов в преобразовании энергии (1976). [c.14]

    Мы в своем изложении исходили из того, что основой синтеза АТР является перенос электронов. В последнее время, однако, широкое признание получила хемиосмотическая теория английского исследователя Питера Митчелла, в основу которой положено представление о перемещении протонов. [c.122]

    При описании механизма образования АТР путем мембранного фосфорилирования в настоящее время общепринятой является хемиосмотическая теория сопряжения окисления и фосфорилирования, предложенная П. Митчеллом в 1961 г. Согласно этой тео- [c.42]

    Согласно хемиосмотической теории Митчелла, окислительное фосфорилирование зависит от протонного градиента, возникающего при переносе электронов по транспортной цепи. Протонный градиент может быть сопряжен с продукцией АТФ или использован для регуляции поступления кальция. Если содержание внутриклеточного кальция превышает некий оперативный уровень, митохондрия способна переключаться с продукции АТФ на кальциевый транспорт. Таким образом, любые колебания внутриклеточного уровня кальция будут вызывать изменения активности митохондриального дыхания. Если митохондрия активно накапливает кальций, это может привести к колебаниям величины внутриклеточного pH. Так, инъекция Са " " в нейроны улитки Н. aspersa вызывает снижение величины внутриклеточного pH и усиленное выведение водородных ионов из клетки (Mee h, Thomas, 1977). [c.94]

    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]


    Итак, в соответствии с хемиосмотической теорией П. Митчелла, энергия, освобождаемая в результате работы электронтранс-портной цепи, первоначально накапливается в форме трансмембранного градиента ионов водорода. Разрядка образующегося Ацн+ происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса возвращаются по градиенту Дрн+ через Н" —АТФ-синтазу, при этом без возникновения каких-либо промежуточных высокоэнергетических соединений [c.101]

    Итак, в соответствии с хемиосмотической теорией П. Митчелла, энергия, освобождаемая в результате работы электронтранспортной цепи, первоначально накапливается в форме трансь мбранного градиента ионов водорода. Разрядка образующегося А х + происходит с участием локализованного в той же мембране протонного i Ф- интe-тазного комплекса Н+ возвращаются по градиенту A Xн-f через Н+-АТФ-синтетазу, при этом без возникновения каких-дибо промежуточных высокоэнергетических соединений из АДФ и неорганического фосфата образуется АТФ, (Сами сопрягающие мембраны в интактном [c.87]

    Бактерии приспособлены к жизни в гораздо более вариабельных и обычно менее благоприятных условиях окружающей среды, чем митохондрии или хлоропласты. В результате бактерии приобрели целый ряд систем для транспорта субстратов, таких, как аминокислоты и сахара. Первоначально хемиосмоти-ческая теория Митчелла возникла из попыток объяснить механизм активного транспорта в бактериях. Интересно отметить поэтому, что одна из бактериальных транспортных систем — фосфотрансферазная — представляет собой пример механизма, наиболее близкого к гипотетическому механизму векторной транслокации групп . Второй класс бактериальных транспортных систем — это хемиосмотические механизмы, сопряженные с переносом протонов третий включает ряд помп, использующих энергию гидролиза АТР. [c.171]

    Хемиосмотическая теория сопряжения. В настоящее время наибольгним признанием пользуется хемиосмотическая теория английского биохимика П. Митчелла (1961). Он высказал предположение, что поток электронов через систему молекул-переносчиков сопровождается транспортом ионов через внутреннюю мембрану митохондрий. В результате на мембране создается электрохимический потенциал ионов Н , включающий химический, или осмотический, градиент (ДрН) и электрический градиент (мембранный потенциал). Согласно хемиосмотической теории электрохимический трансмембранный потенциал ионов и является источником энергии для синтеза АТР за счет обращения транспорта ионов через протонный канал мембранной -АТРазы. [c.158]

    Н -АТФаза. Обратимая протон-траислоцирующая АТФаза, или Н -АТФаза, катализирует последний этап окислительного и фотосинтетического фосфорилирования а митохондриях, хлоропластах и бактериях. Согласно хемиосмотической гипотезе Ti. Митчелла, постулированной им в (%1 г. и получившей к настоящему времени множество экспериментальных подтверждений, дыхательная или фотосинтезирующая цепь, асимметрично расположенные в мембране, генерируют разность протонных потенциалов на сопрягающей мембране. Обратный транспорт протонов посредством Н -АТФазы обусловливает сиитез АТР из ADP и неорганического фосфата. Поэтому этот фермент иногда называют еще АТФ-синтетазой. Следует отметить, что существуют и другие теории сопряжения окисления и фосфорилирования (Ф. Липман, Э. Слейтер, П. Бойер, Р. Вильямс и др.). Одиако они не получили столь широкого распространения, как гипотеза П. Митчелла. [c.619]


Смотреть страницы где упоминается термин Хемиосмотическая теория Митчелл: [c.47]    [c.245]    [c.646]    [c.141]    [c.27]    [c.10]   
Жизнь зеленого растения (1983) -- [ c.122 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Хемиосмотическая теория



© 2025 chem21.info Реклама на сайте