Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первый закон первое начало термодинамики

    Вывод о недостаточности первого начала термодинамики для определения направления и предела протекания процессов привел к установлению второго начала термодинамики. Второе начало термодинамики, так же как и первое начало, является постулатом, обобщением опытных данных. Доказательством второго начала может служить то, что все выводы, вытекающие из него, до сих пор всегда находили подтверждение на опыте. В 1824 г. С. Карно установил основные положения второго начала термодинамики. В середине XIX в. Клаузиус, Томсон и Максвелл показали, что второе начало термодинамики — один из наиболее общих законов природы .  [c.109]


    Уравнение (1.1) —аналитическая запись первого начала термодинамики для закрытой ТС, т. е. по существу аналитическая запись закона сохранения энергии. В соответствии с этой записью положительными считаются тепло, подводимое к ТС, и, работа, совершаемая ТС. Внутренняя энергия U определяется состоянием ТС, ее небольшое изменение — это дифференциал функции состояния. При переходе из состояния 1 в состояние 2 изменение внутренней энергии [c.11]

    Первый закон (первое начало) термодинамики имеет несколько формулировок  [c.22]

    Первое начало термодинамики представляет собой закон сохранения энергии в приложении к системам, находящимся в механическом и тепловом взаимодействии с окружающей средой, и может быть выражено уравнением  [c.85]

    Одним из следствий первого начала термодинамики является открытый в 18 6 г. русским химиком Г. И. Гессом закон, который часто называют законом постоянства сумм теплот. Установленный еще до окончательной формулировки первого начала, он является основой всех термохимических расчетов с учетом того, что тепловые [c.25]

    Первое начало термодинамики есть закон сохранения энергии изолированной системы. Оно не выведено из каких-либо более простых положений, а является обобщением многочисленных непротиворечащих ему наблюдений. Его следует рассматривать как постулат, справедливый для любой изолированной системы. При применении первого начала к закрытым системам подразумевается, что после переноса теплоты все процессы в закрытой системе идут, как в изолированной. (Обмен энергией с окружающей средой можно считать мгновенным время в термодинамических процессах исключено.) [c.24]

    Первый закон (первое начало) термодинамики — это, фактически, закон сохранения энергии. Он утверждает, что энергия изолированной системы постоянна. В неизолированной системе энергия может изменяться за счет а) совершения работы над окружающей средой б) теплообмена с окружающей средой. [c.19]

    Применение первого начала термодинамики к химическим процессам. Закон Гесса. Все химические процессы протекают с выделением или поглощением теплоты. В технологии вяжущих веществ важнейшая роль отводится составлению тепловых балансов химических реакций и проведению теплотехнических расчетов. Основой при этом служит закон Гесса, открытый в 1840 г., который можно рассматривать как частный случай первого начала термодинамики. [c.39]


    Сопоставляя уже приведенную нами выше (стр. 169) формулировку закона Гесса с результатами экспериментального исследования, мы видим, что Гесс в ясной и убедительной форме установил независимость энергетических изменений от пути процесса, т. е. именно то, что представляет собою одну из фундаментальных формулировок первого начала термодинамики. [c.171]

    Третий закон термодинамики не имеет такого общего характера, как первый закон термодинамики (на его основе получены две термодинамические функции V и Н) и второй закон термодинамики, который вводит в термодинамику новую функцию-энтропию 5. Третий закон термодинамики определяет только нижнее граничное значение энтропии для начала отсчета температуры. Отклонение энтропии от нулевого значения при температурах, близких к абсолютному нулю, связано с частичной аморфизацией твердого тела (дефекты в решетке) или с тем, что вещество содержит примеси (появление энтропии смешения). Однако эти отклонения не исключают возможности расчета изменения энтропий при химических реакциях, так как ошибка в расчете будет составлять значение Р п 2. [c.216]

    Закон Гесса, являющийся следствием первого начала термодинамики, формулируется следующим образом. Тепловой эффект химической реакции простых веществ зависит от исходного и конечного состояний системы и не зависит от пути, по которому протекает реакция. [c.623]

    Закон Гесса, являющийся следствием первого начала термодинамики, формулируется следующим образом [2—4]. Тепловой эффект химической реакции зависит от исходного и конечного состоя- [c.586]

    Поясним на примере окисления железа приемы использования первого начала термодинамики (закона Гесса) при расчете тепловых эффектов реакций. [c.91]

    Равенства (2.6) и (2.7), выведенные нами как следствия первого начала термодинамики, отражают один из важнейших термодинамических законов. Этот закон русским академиком Г. И. Гессом был установлен эмпирически еще до того, как было сформулировано первое начало термодинамики Каким бы путем ни совершалось соединение, — шло ли оно непосредственно или происходило косвенным путем в несколько приемов, — количество выделившейся при его образовании теплоты всегда постоянно . [c.47]

    Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим процессам. [c.17]

    В основе термодинамического анализа равновесных состояний систем и направленности протекающих в системах процессов лежит второй закон ( второе начало ) термодинамики. Как и первый закон, он имеет характер аксиомы, обобщающей эмпирические сведения. Для него также предложено много различных формулировок, из которых наиболее часто используют следующие невозможен самопроизвольный переход энергии (в форме теплоты) от менее нагретого тела к более нагретому  [c.69]

    Второе начало (закон) термодинамики является одним из важнейших законов природы. Он охватывает широкий круг явлений природы, поэтому его смысл выражают в различных формулировках. Закон сохранения энергии (первое начало термодинамики) не содержит указаний о направлении процессов в изолированной системе. Второе начало (закон) термодинамики позволяет предвидеть направление химических процессов в изолированной системе. [c.41]

    Тогда, когда в системе протекают лишь немеханические процессы (кроме изменения объема системы), в энергообмене участвует лишь ее внутренняя энергия и. Согласно закону сохранения, изменение внутренней энергии Д6 слагается из сумм теплот и немеханических работ X (с учетом работы расширения системы) рассматриваемого процесса — первое начало термодинамики- [c.44]

    Первое начало термодинамики выражает собой закон сохранения энергии в наиболее общем виде. В случае бесконечно малого изменения состояния системы [c.62]

    Таким образом, используя закон Гесса, который в свою очередь является частным случаем первого начала термодинамики, можно определять тепловые эффекты химических реакций. [c.77]

    При изложении закона Гесса и следствий из него необходимо особо подчеркнуть, что первое начало термодинамики дает возможность только установить баланс энергии в том или ином процессе и показывает, что энергия не уничтожается и не возникает из ничего. Однако первое начало не показывает, в каком направлении и до какого предела будет протекать тот или иной процесс, связанный с превращением энергии. [c.77]

    Термодинамика базируется на двух основных законах, получивших название первого и второго начал термодинамики. Оба начала выведены из обобщения практического опыта. [c.47]

    Во всех химических явлениях выполняется закон сохранения энергии. Соответственно и все законы термохимии являются следствием первого начала термодинамики. [c.60]


    Этот закон также является частным случаем первого начала термодинамики применительно к химическим реакциям, протекающим в изохорных или изобарных условиях. [c.60]

    Как следует из первого начала термодинамики, при переходе одной формы энергии в другую полная энергия изолированной системы сохраняется. Закон сохранения энергии устанавливает основной, неизменный принцип всех природных явлений, но не дает, однако, еще представления о том, какие процессы на самом деле осуществимы, а какие нет. Действительно, можно представить целый ряд явлений, не противоречащих закону, но тем не менее совершенно невозможных. Например, если два тела с разной температурой касаются друг друга, то теплота может переходить от одного тела к другому, причем со стороны первого начала нет [c.87]

    Рассмотрев вопросы об энергии системы, об изменении этой энергии в процессах перехода системы из одного состояния в другое и о формах, в которых система может обмениваться энергией с окружающей средой, придадим этим рассуждениям строгую количественную форму. Для этого сформулируем первый основной закон (или первое начало) термодинамики. [c.13]

    Часто утверждают, что первое начало термодинамики — это частный случай закона сохранения энергии. Такое утверждение не вполне точно. Закон сохранения энергии — это один из самых основных законов природы. Все явления, которые рассматривает термодинамика, строго подчиняются этому закону. В этом смысле первое начало термодинамики является одной из частных форм закона сохранения энергии. Но первое начало термодинамики имеет свое содержание, выходящее за рамки закона сохранения энергии. В чем же заключается это содержание  [c.13]

    Тщательный анализ показал, что первое и второе начало термодинамики не позволяют решить этой задачи. Необходимо привлечь какое-то дополнительное условие, не вытекающее из двух основных законов термодинамики. В. Нернст предположил, что такое дополнительное условие состоит в том, что две кривые АН == ф (Т) и АО == г з (Т) не только имеют общую точку при Т = О, но имеют в этой точке и общую касательную  [c.102]

    Все изложенное, как уже было подчеркнуто, логически не вытекает из первого и второго начала термодинамики, а требует некоторого дополнительного постулата. Таким является уравнение (III.5.2) [или уравнения (III.5.7) и (III.5.8)]. Этот постулат получил название теплового закона (или тепловой теоремы) Нернста. [c.103]

    Закон Гесса вытекает из первого начала термодинамики, так как независимость Qv — Ь.11у и Qp = Hp от пути процесса следует непосредственно из уравнений (1,1) и (1,3) при бЛ = 0. [c.17]

    Первое начало термодинамики —частный случай закона сохранения и превращения энергии в применении к процессам, сопровождающимся выделением, поглощением или преобразованием теплоты. [c.30]

    Независимость теплового -фекта реакции от пути процесса была установлена опытным пут м русским академиком Гессом в 1836 г. Закон Гесса гласит, что тепловой эффект химических реакций не зависит от пути перехода (процесса), а зависит только от начального и конечного состояния системы. Этот закон является частным случаем первого начала термодинамики и строго соблюдается для процессов, в которых единственной работой, совершаемой системой, является работа против внешнего давления, а р или V в течение процесса остаются постоянными. Поясним смысл закона на примере в общем виде. Предположим, что реагируют три вещества по уравнению [c.85]

    Первое начало термодинамики, или закон сохранения энергии, утверждает  [c.11]

    Этот постулат не вытекает из первого начала термодинамики и является самостоятельным законом природы, который находится в полном соответствии со всем опытом человечества. Однако формулировка постулата, данная Клаузиусом, допускала неоднозначное толкование этого закона. Поэтому в дальнейшем развитии учения о втором начале термодинамики были высказаны другие формулировки постулата второго начала, более строгие. Планку принадлежит, вероятно, наиболее удачная  [c.25]

    I. в основе расчета энтропии вещества по термическим данным лежит тепловой закон Нернста или постулат Планка, согласно которым энтропия твердых чистых кристаллических веществ при абсолютном нуле равна нулю 5о=0 (см. разд. I. 10). Это положение не следует из первого и второго начал термодинамики, а является самостоятельной закономерностью, базирующейся на экспериментальных данных и представлениях статистической механики. Подробное изучение энтропий при низких температурах показало, что постулат Планка соблюдается далеко не для всех веществ, т. е. энтропия многих из них при абсолютном нуле имеет некоторое небольшое значение (порядка 3—4 Дж/моль-К). Однако, поскольку для расчета равновесий нужны значения энтропии не самих веществ, участвующих в реакции, а их алгебраическая сумма, то значение Д5о оказывается в большинстве случаев очень малым, что и позволяет произвести вычисления с достаточной точностью, если ею пренебречь. Ввиду того, что вблизи абсолютного нуля все вещества находятся в твердом состоянии, постулат Планка позволяет рассчитать энтропии при любой заданной температуре. [c.378]

    Первый закон ( первое начало ) термодинамики есть частный случай закона сохранения и превращения энергии в применении к объектам, изучаемым термодинамикой, т. е. к процессам, сопровождающимся выделением или поглощением теплоты и производством работы. Этот закон выражает неуничтожае-мость движения не только в количественном, но и в качественном смысле (Энгельс).  [c.28]

    Выдающихся успехов в этой области достигли английский физик Джеймс Прескотт Джоуль (1818—1889) и немёикие физики Юлиус Роберт Майер (1814—1878) и Герман Людвиг Фердинанд Гельмгольц (1821—1894). К 40-м годам прошлого столетия в результате проведенных ими работ стало ясно, что в процессе перехода одной формы энергии в другую энергия не создается и не исчезает. Этот принцип получил название закона сохранения энергии, или первого начала термодинамики. [c.108]

    Закон Гесса был установлен эмпирически. Легко видеть, однако,что он является строгим следствием первого начала термодинамики. Так как тепловох эффект = А11 есть изменение энергии системы, а = АН — изменение энтальпии системы и так как энергия и энтальпия являются функциями состояния, то по основному свойству функций состояния эти тепловые эффекты не зависят от пути процесса, а определяются только начальным и конечным состоянием. [c.76]

    Приведенное уравнение выражает первое начало термодинамики — закон неуничтожимости энергии. Он утверждает, что энергия, полученная системой в форме теплоты, может превращаться в работу, а полученная в форме работы — в теплоту. Первый закон термодинамики есть частный случай закона сохранения и превращения энергии в применении к тепловым процессам. Все видьг экер- [c.36]

    Закон Гесса является следствием первого начала термодинамики, и справедлив при y= onst или /j= onst. Его называют также законом постоянства сумм теплот реакции. В химической литературе закон Гесса часто формулируют и так  [c.40]

    Первое начало термодинамики вйтекает из закона Ломоносова и является принципом сохранения и превращения энергии в применении к термодинамическим процессам. [c.9]

    Уравнение (XIII, 31) можно получить, разложив в ряд АН— = (( Т) и другими способами. Например, нет необходимости, чтобы члены разложения содержали целые степени Т. Вместо того, чтобы начинать разложение с члена, содержащего Р, можно начать с члена, содержащего 7 (где а. = ). Этим подтверждается, что для доказательства теплового закона нельзя исходить только из первого и второго начал термодинамики уравнение (XIII, 27) из них не вытекает. [c.415]

    Энергия — основная физическая величина. Математический аппарат большинства разделов теоретической физики, включая термодинамику, основан на различных формах закона сохранения энергии. Однако важнейшая особенность макроскопических систем, которые рассматриваются в термодинамике, состоит в том, что энергию макроскопической системы невозможно непосредственно измерить. Различные физические методы позволяют только определять изменения энергии отдельных частиц системы — атомов, молекул, ионов. Однако не существует никаких методов непосредственного измерения энергии системы как целого. Изменение энергии макроскопической системы определяют в виде теплоты или работы. Первоначально они рассматривались независимо. Поэтому для макроскопической системы сам факт существования внутренней энергии макроскопической системы как некоторой физической величины удалось установить только в середине XIX в., причем для этого потребовалось открыть ранее неизвестный закон природы — первое начало термодинамики. Впоследствии возникла необходимость использовать и другие неизмеряемые величины — энтропию, химический потенциал и т. п. Широкое применение в математическом аппарате термодинамики непосредственно не измеряемых величин является особенностью термодинамики как науки и сильно затрудняет ее изучение. Однако каждая неизмеряе-мая величина в термодинамике точно определена в виде функций измеряемых величин и все окончательные выводы термодинамики можно проверить на опыте. При этом для описания свойств системы используют специальные термодинамические переменные (или термодинамические параметры). Это физические величины, с помощью которых описывают явления, связанные с взаимными превращениями теплоты и работы. Все это макроскопические величины, выражающие свойства больших групп молекул. Не все эти величины можно непосредственно измерить. [c.6]


Смотреть страницы где упоминается термин Первый закон первое начало термодинамики: [c.606]    [c.89]    [c.90]    [c.186]    [c.213]    [c.11]   
Термодинамика (0) -- [ c.19 , c.26 , c.27 , c.28 , c.29 , c.69 , c.83 , c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Закон первый

Закон сохранения материи — 12. Обменные процессы в организмах — 13. Закон сохранения энергии — 14. Первое начало термодинамики— 16. Второе начало термодинамики. Энтропия—18. Третье начало термодинамики — 20. Критика тепловой смерти вселенной — 21. Принципы термохимии — 24. Свободная энергия — 28. Второе начало термодинамики и организмы

Закон термодинамики

Закон термодинамики первый

Значение термодинамики. 2. Закон эквивалентности. 3. Закон сохранения энергии. 4. Невозможность вечного двигателя. 5. Внутренняя энергия. 6. Уравнение первого начала Применение первого начала к идеальным газам

Начала тел

Начала термодинамики первое

Основные законы и уравнения термодинамики. Первое начало термодинамики Уравнение первого начала термодинамики

Первое начало термодинамики

Первый закон (начало) термодинамики

Термодинамики первый



© 2025 chem21.info Реклама на сайте