Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспрессия генов чужеродных

    Никакой универсальной стратегии оптимизации экспрессии клонированных генов не существует. Больщинство таких генов имеют уникальные молекулярные свойства, и оптимальные системы экспрессии для каждого из них приходится подбирать всякий раз заново. Эффективность экспрессии любого чужеродного гена зависит также от его родства с организмом-хозяином. Несмотря на то что многие представители как про- так эукариотических организмов способны [c.105]


    По данным одной из работ, секреция многих гетерологичных белков в Е. соИ зависит от уровня экспрессии соответствующих генов. Чужеродные белки, синтезируемые наиболее активно, не обязательно столь же активно секретируются. Иногда интенсивный синтез чужеродного белка вызывает перегрузку секреторного аппарата и его блокирование. Таким образом, если нужно, чтобы данный белок непременно секретировался, то можно попытаться понизить уровень экспрессии соответствующих генов. [c.126]

    Метод клонирования нашел множество новых применений. С помогцью микробов можно получать большие количества чужеродной ДНК, чтобы исследовать ее. Если в бактериальной клетке происходит экспрессия генов такой ДНК, это позволяет микробиологическим путем получать, например, гормоны и ферменты. Новый метод может быть применен на пользу человека поскольку, однако, конструирование [c.470]

    ЭКСПРЕССИЯ (ФУНКЦИОНИРОВАНИЕ) ЧУЖЕРОДНЫХ ГЕНОВ В ГЕНОМЕ РАСТЕНИЙ [c.63]

    Во многих случаях для изучения экспрессии генов млекопитающих наиболее приемлема так называемая временная экспрессия, происходящая в части клеток в течение нескольких часов после введения ДНК. Если же требуются большие количества продукта, то приходится выделять клоны, клетки которых сохраняют вектор и в ходе пролиферации. Подобное стабильное наследование вектора достигается двумя путями использованием вирусного репликона, например вируса папилломы крупного рогатого скота (ВРУ) (см. гл. 8 тома П этой серии [34]), или в результате интеграции вектора в ДНК клетки-хозяина. Известно, что любая чужеродная ДНК с низкой частотой способна встраиваться в неспецифические участки хозяйской хромосомы получившиеся клоны можно выявить, если использовать подходящий селективный маркер. В гл. 6 тома И данного издания описаны различные селектируемые векторы, а также способы их введения в культуру клеток. В этой главе мы коснемся методов, позволяющих получить высокоэффективную экспрессию интегрирующихся векторов в стабильно трансфицированных линиях клеток. [c.238]

    Чужеродный белок, продуцированный в Е. oU, будет стабильным и не будет быстро разлагаться под действием бактериальных протеаз. Если нативный белок в бактериях нестабилен, экспрессия генного продукта как части белка слияния может улучшить выход. Альтернативно некоторые белки могут быть стабилизированы синтезом в больших количествах, возможно, из-за образования нерастворимых белковых преципитатов, которые устойчивы к действию протеаз. [c.163]

    Перенос и экспрессия генов у эукариот. Для микроорганизмов известны два основных способа введения чужеродного генетического материала в клетку. При трансформации чистая ДНК при некоторых, не до конца ясных условиях проникает в микробную клетку и встраивается в генетический материал. При трансдукции генетическая информация от одной бактериальной клетки к другой передается с помощью бактериофага. Эксперименты по трансформации бактерий сьп-рали важную роль в истории генетики с их помощью установили, что именно ДНК является генетически активным материалом [220]. [c.167]


    Следует отметить, что высокий уровень транскрипции может привести к нестабильности плазмидной репликации, если за активно транскрибируемым геном не расположены сайты эффективной терминации транскрипции. Для практических целей удобно использовать регулируемую экспрессию, так как не только сверхсинтез РНК, но и особенно сверхсинтез многих белков может оказаться гибельным для клетки. При таком подходе в процессе периодической ферментации в первой ее фазе, когда происходит рост клеток и накопление биомассы, экспрессия клонированных чужеродных генов не происходит. Затем на втором этапе внешний индуктор (химическое вещество, температура) запускает сверхсинтез нужного белка. [c.156]

    НОСТИ, которая конкурирует с NPT-II за меченый АТР. Если уровень NPT-II высок, как, например, в бактериальной клетке, то фермента достаточно для преодоления такой конкуренции и образования определимых количеств фосфорилированного канамицина. Однако в чужеродном окружении (эукариотические клетки), когда экспрессия гена NPT-II контролируется чужеродным промотором, уровень фермента обычно значительно ниже по сравнению с конкурирующей активностью, и, следовательно, его недостаточно, чтобы преодолеть конкуренцию за АТР. В результате анализ может показать, что фермент отсутствует в экстракте. [c.347]

    Промотор гена полиэдрина чрезвычайно сильный, а цикл развития вируса не зависит от наличия самого гена. Следовательно, замена последнего геном чужеродного белка с последующей инокуляцией полученным рекомбинантным бакуловирусом культуры клеток насекомого может привести к синтеззу большого количества гетерологичного белка, который благодаря сходству систем внесения посттранс-ляционных модификаций у насекомых и млекопитающих будет близок (а возможно, и идентичен) к нативной форме того белка, который интересует исследователя. Исходя из этого на основе бакуловирусов были разработаны векторы для экспрессии генов, кодирующих белки млекопитающих и вирусов животных. [c.144]

    Для идентификации трансформированных клеток необходимо уметь обнаруживать чужеродную ДНК, интегрировавшую в геномную ДНК растения. Более того, при исследовании сигналов регуляции транскрипции и их функций в специфических растительных тканях (листьях, корнях или цветках) зачастую важно уметь количественно оценивать уровень экспрессии гена, кодирующего легко идентифицируемый продукт. Все это требует применения репортерных генов, которые позволяют либо проводить отбор трансформированных клеток, либо оценивать активность кодируемого ими фермента. Было протестировано несколько разных генов, которые можно использовать как доминантные селективные маркеры, и генов, чей белковый продукт можно обнаружить с помощью специфических методов (табл. 17.4). Поскольку многие из ренортерных генов имеют бактериальное происхождение, они были снабжены регуляторными последовательностями, обеспечивающими их экспрессию в растительных клетках. Проводя отбор по доминантному маркеру, можно получить культуру, содержащую только трансформированные клетки. Так, в присутствии канамицина выживают только клетки растений, синтезирующих активную неомицинфосфо-трансферазу. [c.381]

    Методы генной инженерии в сочетании с доступностью ДНК, являющихся копиями мРНК, открыли три возможности а) выделение ранее труднодоступных генов эукариот в индивидуальном виде б) получение их в больших количествах, необходимых для структурного анализа в) создание системы их экспрессии в чужеродных организмах, например в бактериальных клетках. [c.298]

    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]

    Эукариотические гены одних видов были также клонированы и экспрессировались в клетках других видов. Например, ген, кодирующий tx-цепь гемоглобина кролика, был введен в растущие в культуре мышиные клетки и экспрессировался в них. Внедрение чужеродного гена в эукариотические клетки не всегда, однако, сопровождается его транскрипцией и трансляцией с образованием активного белка. Регуляция экспрессии генов у эукариот пока еще мало изучена (разд. 29.22) во время написания этой книги проводится большое число исследований по выяснению условий экспрессии реком-бинантньк генов в эукариотических клетках. [c.988]


    За последнее десятилетие удалось осуществить молекулярное клонирование и характеризовать структуру множества генов млекопитающих. Функциональное содержание и механизмы регуляции этих генов исследуются теперь в экспериментах по переносу генетического материала. Рекомбинантные конструкции на основе последовательностей дикого типа или их мутантных производных вводят путем трансфекции в культивируемые клетки [I] для того, чтобы идентифицировать г ис-действующие регуляторные элементы и изучить физиологические последствия экспрессии генных продуктов. Однако,, даже если для интересующего гена и существует подходящая культивируемая тканевая система, возможности исследования генной экспрессии в таких экспериментах in vitro ограничены. В конце концов функции генов и закономерности их экспрессии следует изучать, исходя из сложности целого организма. Был разработан целый ряд методик, позволяющих вводить интересующие нас последовательности ДНК в клетки зародышевого пути мышей и других млекопитающих. Включившись в геном данного организма, такие чужеродные последовательности, называемые трансгенами, устойчиво наследуются в ряду поколений. Весьма важное значение имеет тот факт, что трансгены часто экспрессируются и вызывают изменения в системе тканевой специфичности, физиологических реакциях, а иногда во всей программе развития организма. Следовательно, открывается путь к изучению функциональной роли и регуляции экспрессии интересующих нас клонированных генов на уровне целого организма — в данном случае это так называемый трансгенный организм. [c.308]

    Один из приемов, позволяющих снизить протеолиз в клетке, — это получение крупных химерных белков или тандемпосое-диненных белков. Так, имеется сообщение о том, что тандемная дупликация, или тандемный тройной ген проинсулина в клетках Ё. соИ обеспечивает защиту такого белка от протеолитической деградации. Итак, важным условием оптимальной экспрессии гена является правильный выбор реципиептной клетки, которая должна обеспечить стабильность чужеродной мРНК и минимальную протеолитическую деградацию белкового продукта. [c.104]

    Выявлена и экспрессия чужеродных генов. Существенное значение в связи с химическим импринтом имеет то обстоятельство, что эту экспрессию можно индуцировать тяжелыми металлами (Palmiter et al., 1982). Время экспрессии генов представляет собой один из ключевых моментов в развитии жиют-ных. Влияние, оказываемое на этот процесс металлами, свидетельствует о том, что химическое воздействие среды имеет в этом смысле гораздо более важное значение, чем предполагалось ранее. [c.277]

    Конъюгативный перенос бактериальных генов в клетки животных. Перенос генов во время конъюгации бактериальных клеток, когда мужские и женские клетки вступают в контакт друг с другом через объединяющий их цитоплазматический мостик, является широко распространенным и хорошо изученным генетическим явлением [224, 225]. Недавно была продемонстрирована возможность конъюгативного переноса ДНК из бактериальных клеток в культивируемые клетки животных [226]. В этой серии экспериментов В.Л. Ватерсу удалось показать, что гены устойчивости к антибиотикам, находящиеся в составе конъюгатив-ной плазмиды Е. соН, переносятся с низкой частотой в клетки яичников китайских хомячков СНО К1 из бактериальных клеток, давая возможность клеткам-реципиентам выживать на селективной среде в присутствии соответствующих антибиотиков. При этом не происходило поглощения бактериальных клеток клетками животных посредством эндоцитоза, и перенос имел место в присутствии ДНКазы в питательной среде, что исключало непосредственный захват ДНК клетками из культуральной жидкости. Чужеродная ДНК реплицировалась в клетках животных, а экспрессия генов генетических маркеров происходила лишь в том случае, если гены находились под контролем эукариотических промоторов. Хотя конъюгативный перенос генов бактерий в клетки дрожжей, а также растений (Ti-плазмиды) известен давно, обсуждаемая работа впервые продемонстрировала возможность непосредственного обмена генами между бактериями и клетками высших животных. В том случае, если данный процесс удастся оптимизировать, у генной инженерии появится дополнительная возможность введения очень больших молекул ДНК в клетки животных, в том числе и в целях генотерапии. [c.154]

    Теперь, благодаря разработке методов получения трансгенных животных стало возможным изучать толерантность к своему прямым путем. Эти методы позволяют вводить мышам с известной генетической основой специфический ген и анализировать влияние данного гена на развитие иммунной системы. Кроме того, если вводимый ген соединить с тканеспецифическим промотором, экспрессию гена можно ограничить специфичными для данного промотора клетками. Иммунная система реагирует на белковый продукт трансгена , по существу, как на истинный собственный антиген (аутоантиген), и все происходящие при этом процессы можно изучать in vivo, исключив травмирующие вмешательства и воспалительные реакции, сопутствующие пересадке чужеродных клеток или тканей. Кроме того, жи- [c.260]

    При специфической трансдукции фрагмент бактериальной ДНК связан ковалентно с фаговой хромосомой и реплицируется в ее составе. Это позволяет мультиплицировать трансдуцируемые бактериальные гены и манипулировать ими в лабораторных условиях. Явление специфической трансдукции было открыто при работе с умеренным бактериофагом X, развивающимся в клетках Е. соИ К-12 (Morse et al., 1956). Этот фаг является представителем большого семейства лямбдоидных фагов. Он сыграл исключрггельную роль в развитии молекулярной генетики и генетической инженерии. Столь же значительна роль нитевидных фагов семейства М13. Их ДНК широко используется в качестве векторов. Поэтому для понимания многих аспектов генно-инженерных работ необходимо знать основные элементы их генетики и биологии развития. По трем причинам более детально описан фаг Х. Во-первых, это классический объект, послуживший моделью при изучении регуляции экспрессии генов вообще и временного профаммирования развития фагов в частности. Во-вторых, в 60-е годы он явился объектом, на котором была заложена база генетической инженерии — представление о векторе и возможности клонирования и экспрессии в нем чужеродных генов. В третьих, в 70-е годы [c.103]

    ВекторыpGEM. Описанные плазмидные векторы пригодны лишь для клонирования генов в клетках Е. соН и родственных им грамотрицательных бактерий, например. Salmonella и Serratia. Они универсальны — их используют для самых разнообразных целей. В то же время сконструировано много специальных векторов, приспособленных, например, только для идентификации регуляторных сигналов, для суперпродукции чужеродных белков и их секреции, для секвенирования ДНК, экспрессии генов животных в [c.201]

    Как известно, экспрессия генов осуществляется путем их транскрипции и трансляции. Эффективность транскрипции за висит, прежде всего, от степени сродства РНК-полимеразы к iipo-мотору, а эффективность трансляции — от стабильности мРНК и ее способности связываться с рибосомами. Следовательно, системы транскрипции и трансляции реципиентных клеток долз.с-ны узнавать последовательности нуклеотидов в регуляторных сайтах клонируемых генов Это достигается путем присоединения чужеродного гена к промотору, сайту связывания рибосом и терминатору транскрипции, специфичным для тех клеток, в которых ген клонируется. Готовый набор этих элементов называют экспрессионной кассетой. Встраивание в кассету чужеродного гена приводит обычно к его экспрессии. [c.314]

    Однако не всегда при успешной экспрессии чужеродного гена можно получить функционально активный продукт. Дело в том, что многие эукариотические белки активируются только после их модификации (например, после протеолиза, гликозилирования, фосфорилирования и т. п.), происходящей в результате действия специфических клеточных ферментов. Но чужеродные белки могут неправильно модифицироваться или не модифицироваться вообще. Это ограничивает выбор реципиентных клеток, когда нужно получить активные модифицированные белки. В таких случаях для клонирования генов приходится использовать клетки орга низмов, родственных тем, откуда были взяты гены. С этой целью разрабатываются системы клонирования и экспрессии генов в различных семействах бактерий и низших грибов, в растительных и животных клетках ( Транскрипция и трансляция. Методы , 1987 Maximizing gene expression , 1986). [c.314]

    Плазмидные векторы. Как уже отмечалось, для клонирования и экспрессии генов в клетках Е. oli обычно применяют различные модификации вектора pBR322, содержащие промоторы фага Л, лактозного и триптофанового оперона и их операторные участки. Благодаря последним экспрессию клонируемых генов можно регулировать, если плазмидная или бактериальная ДНК несет гены соответствующих репрессоров. Из многих вышеперечисленных факторов, влияющих на экспрессию генов, решающими являются сила промотора и структура сайта связывания рибосом (RBS-сайта). Напомним, что этот сайт включает в себя начальные кодоны гена, поэтому нет простых путей, обеспечивающих эффективную экспрессию чужеродных генов в бактериях. Такой экспрессии добиваются двумя принципиально различными подходами (схемами) — путем [c.329]


Смотреть страницы где упоминается термин Экспрессия генов чужеродных: [c.145]    [c.111]    [c.127]    [c.383]    [c.384]    [c.503]    [c.81]    [c.39]    [c.97]    [c.124]    [c.163]    [c.124]    [c.102]    [c.159]    [c.115]    [c.163]    [c.366]    [c.339]    [c.344]    [c.412]    [c.186]    [c.190]    [c.294]   
Современные методы создания промышленных штаммов микроорганизмов (1988) -- [ c.155 , c.156 ]




ПОИСК







© 2025 chem21.info Реклама на сайте