Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериальные селективная среда

    Микроорганизмы обычно синтезируют каждую из аминокислот в определенных количествах, обеспечивая тем самым синтез специфических белков. Это объясняется тем, что контроль за скоростью биосинтеза каждой аминокислоты осуществляется по принципу обратной связи как на уровне генов, ответственных за синтез соответствующих ферментов (репрессия), так и на уровне самих ферментов, способных под действием избытка образующихся аминокислот изменять свою активность (ретроингибирование). Такой контроль исключает перепроизводство аминокислот, и выделение их из клетки возможно лишь у микроорганизмов с нарушенной системой регуляции. Такие культуры иногда выделяют из природных источников. Так, известны штаммы дикого типа, накапливающие в среде глутаминовую кислоту, пролин или валин. Однако основной путь селекции продуцентов аминокислот — получение ауксотрофных и регуляторных мутантов. Ауксотрофные мутанты отбирают на селективных средах после воздействия на суспензии бактериальных культур физическими (например, ультрафиолетовое или рентгеновское излучение) и химическими (этиленимин, диэтилсульфат, нитрозоэтил-мочевина и т. д.) факторами. У таких мутантов появляется дефектный ген, детерминирующий фермент, без которого не может осуществляться биосинтез определенной аминокислоты. Получение ауксотрофных мутантов — продуцентов аминокислот — возможно только для микроорганизмов, имеющих разветвленный путь биосинтеза, по крайней мере, двух аминокислот, образующихся из одного предшественника. Их биосинтез контролируется на уровне первого фермента общего участка согласованным ингибированием конечными продуктами (ретроингибирование). У таких ауксотрофных мутантов избыток одной аминокислоты при дефиците другой не приводит к подавлению активности первого фермента. Аминокислота, биосинтез которой блокирован в результате мутагенного воздействия, должна добавляться в ограниченном количестве. [c.20]


    Какие же гены оказываются полезными и входят в состав мобильных элементов Это не праздный вопрос, поскольку каждая бактериальная клетка хорошо приспособлена к своей среде обитания и не нуждается в генах, аналогичных тем, которые у нее уже есть и обеспечивают ее адаптацию к среде. С другой стороны, приспособление к совершенно новой среде обитания, по-видимому, требует относительно значительной перестройки генетического материала клетки, включающей, в частности, коадаптацию многих разных генов. Поэтому клетка может получить селективное преимущество за счет приобретения какого-либо гена (в составе транспозона) лишь в том случае, если этот ген сам по себе способен оказаться выгодным для бактерии в определенных условиях, т. е. именно такие гены выгодно иметь транспозонам в своем составе. Действительно, на транспозонах путешествуют гены устойчивости к различным бактериальным ядам, в том числе к тяжелым металлам и антибиотикам, гены дополнительных метаболических путей, позволяющие использовать, например, какой-нибудь необычный источник углерода, наконец гены некоторых токсинов, делающие бактерии патогенными и позволяющие им тем самым существенно изменить образ жизни. [c.124]

    Оптимальным решением была бы возможность микробиологического расщепления в этих емкостях. При этом необходимо помнить, что биологическое воздействие бактерий, грибков и других микроорганизмов на компоненты нефти охватывает самые разнообразные вещества по сравнению с процессами испарения или растворения. Не существует какого-либо одного микроорганизма, способного разрушить все компоненты определенного вида сырой нефти. Бактериальное воздействие характеризуется высокой селективностью и полное разложением всех компонентов нефти требует воздействия многочисленных микроорганизмов различных видов. При этом образуется ряд промежуточных продуктов окисления, для разрушения которых требуются свои микроорганизмы. Парафиновые углеводороды наиболее легко разлагаются бактериями. Следовательно, более стойкие цикланы и арены исчезают из океанической среды в последнюю очередь. Скорость разложения можно увеличить подачей кислорода или введением веществ, которые легко его выделяют при температуре микробиологического разложения. [c.642]

    Таким образом, даже беглый перечень особенностей большинства мутаций, наблюдаемых у человека, и у других хорошо известных видов, таких, как дрозофила, обнаруживает их неадаптивный характер. Мутации возникают не для того, чтобы обеспечить лучшую приспособленность организмов к условиям их обитания. Этот факт, уже давно очевидный генетикам, изучающим высшие организмы, не признавался бактериологами до конца 40-х годов. Большинство ученых, изучавших мутации бактерий, считали, что мутации происходят в бактериальных популяциях в ответ на возникновение новых селективных условий. Например, когда в чашку Петри со средой, содержащей пенициллин, высевают чувствительные к пенициллину бактерии, на поверхности агара появляется несколько устойчивых к этому антибиотику колоний, причем их устойчивость наследуется. Данный факт объясняли тем, что устойчивость к пенициллину индуцируется самим пенициллином. Методология, применявшаяся бактериологами, когда они использовали селективные среды для вьщеления мутантных штаммов, не позволяла ответить на вопрос, отбираются ли при этом мутанты, уже ранее существовавшие в популяции, или само их возникновение индуцируется фактором отбора. Мало того, некоторые микробиологи вообще подвергали сомнению факт существования генов в бактериях По их мнению, отбираемые колонии могут состоять из бактерий, приобретших новое физиологическое состояние, позволяющее им приспособиться к жизни в новых условиях. Фактически такие взгляды тормозили признание идеи о том, что ДНК представляет собой наследственное вещество, хотя на это однозначно указывала трансформирующая активность ДНК, выделенной из пневмококка (см. гл. 4). [c.24]


    Трансдукция — это перенос генетической информации от клетки донора к клетке-реципиенту, который осуществляется фагом. Это явление впервые описали в 1952 г. Н. Циндер и Дж. Ледерберг. Оно основано на том, что в процессе размножения фагов в бактериях иногда образуются частицы, которые наряду с фаговой ДНК или вместо нее содержат фрагменты бактериальной ДНК- Такие частицы называются трансдуцирую-щими. По морфологии и адсорбционным свойствам они ничем не отличаются от обычных фаговых вирионов, но при заражении ими новых клеток они передают им генетические детерминанты предыдущего хозяина. Таким образом, чтобы осуществить трансдукцию (или трансдукционное скрещивание), необходимо размножить фаг на клетках штамма-донора, а затем заразить им клетки штамма-реципиента. Отбор рекомбинантов, которые называются здесь трансдуктантами, проводят на селективных средах, где не могут расти исходные реципиентные клетки. [c.98]

    Используют мутанты микроорганизмов, которые утратили некоторые ферменты синтеза одних аминокислот, но приобрели способность интенсивно синтезировать другие. Ауксотрофные мутанты отбирают на селективных средах после воздействия на бактериальные клетки ультрафиолетовым или рентгеновским излучением или же за счет химического мутагенеза. [c.23]

    Способы получения требуемых последовательностей нуклеотидов из клонотек генов можно разделить на три группы. При использовании первой группы методов рекомбинантные бактерии или фаговые частицы исследуют на присутствие в них искомых последовательностей нуклеотидов путем последовательного перебора случайных клонов. При таком подходе, получившем название скрининга, творческие усилия исследователя направлены только на облегчение самого процесса анализа клонов, например, на его автоматизацию. Во втором случае, присутствие нужных последовательностей обнаруживают косвенно, по появлению в бактериальных клетках или фаговых лизатах бляшек продуктов экспрессии искомых генов - РНК, белков или ферментативной активности, т.е. определенного фенотипа, который отличает такие клоны от соседних, не содержащих соответствующих последовательностей. В этом случае исследователь среди большого количества суммарных клонов осуществляет выбор тех, которые резко отличаются от соседних по своему фенотипу, например, цвету колоний. При таком подходе производится выбор требуемого фенотипа среди большого числа других фенотипов. Реализация третьего подхода требует создания селективных условий, при которых преимущество в размножении получают те клоны, которые отвечают требованиям отбора, например, приобрели способность к росту на селективных питательных средах в присутствии антибиотика или в отсутствие аминокислоты в случае исходно ауксотрофного штамма. Последний подход, кроме своего необыкновенного изящества в замысле, демонстрирует самую высокую эффективность, так как позволяет в одно касание освободиться от всех нежелательных примесей в виде ненужных клонов. [c.162]

    Возник еще один вопрос не вызывается ли изменение генотипа самим селективным фактором, оказывающим направленное воздействие на гены Или же мутации происходят независимо от среды и носят ненаправленный характер Теория Ламарка о наследовании приобретенных адаптивных признаков в отношении высших организмов оказалась несостоятельной. Получила признание теория Дарвина, согласно которой новые типы и виды возникают в результате мутаций, не зависящих от среды, с последующим отбором наиболее приспособленных форм. У высших организмов передающиеся потомкам мутации происходят в половых клетках, в значительной мере защищенных от воздействия среды. В отличие от этого бактериальные клетки легко подвержены внешним влияниям. Поэтому можно было представить себе, что воздействие яда, приводящее к появлению в бактериальной популяции устойчивых мутантов, не сводится только к отбору, а определяет также и направленность мутаций. Вопрос о зависимости мутаций от среды и об их направленном характере оставался кардинальной проблемой биологии, и его предстояло решать на бактериях. [c.440]

    Другая возможная функция-это защита от вирусной или бактериальной инфекции. Антигенный материал человеческого происхождения может быть включен во внешнюю мембрану вируса, в результате чего этот вирус труднее распознается организмом другого человеческого индивида. Однако, если вирус содержит МНС-материал от генетического отличного индивида, он может быть намного легче инактивирован иммунной системой. Такой механизм объясняет, почему высокий полиморфизм МНС-системы имеет селективное преимущество. Другая возможная функция МНС-района-защита от заражения опухолевыми клетками других особей того же вида. С таким объяснением хорошо согласуются наши представления о важной роли МНС-сис-темы при трансплантации, а также высокая степень ее полиморфизма. Дальнейшее выяснение свойств и функций главного комплекса гистосовместимости поможет нам решить многие проблемы, например как организм управляет своим взаимодействием со средой и как недавние изменения в окружающей среде могут повлиять на генетическую конституцию в будущем. Полезно задать следующие вопросы существуют ли в природе другие примеры таких генных кластеров с родственными функциями Может ли их анализ изменить что-то в наших представлениях о кластере МНС На самом деле, один такой пример, уже очень тщательно проанализированный, существует-это мимикрия у бабочек. [c.222]


Рис. 20-72. Схема получения трансгенного растения. Интересующий нас ген кодирует бактериальный белок, токсичный для насекомых. Чтобы ген экспрессировался в растительной клетке, его 5 -конец соединяют с растительным промотором, а З -конец с сайтом полиаденилирования. Модифицированный ген токсина встраивают в плазмиду, содержащую кроме него и маркерный ген (например, ген устойчивости к канамицину), по которому можно проводить селекцию. Плазмида сконструирована таким образом, чтобы и ген токсина, и маркерный ген были окружены особыми повторами, размером 25 нуклеотидных пар, которые в норме окружают Т-ДНК. Плазмиду из клеток Е. oli переносят в Agroba terium, где на отдельной плазмиде присутствуют гены вирулентности. Если такую Agroba terium культивировать вместе с листовыми дисками, продукты генов вирулентности узнают повторы в Т-ДНК и перенесут ДНК, содержащую маркер и гены гоксина в хромосому растения. Все клетки листового диска затем заставляют делиться, помещая экспланты на соответствующую питательную среду, однако способность делиться и образовывать каллус сохранят лишь те клетки, которые содержат ген селективного маркера. Из каллуса затем получают трансгенные растения, которые экспрессируют Рис. 20-72. <a href="/info/1345931">Схема получения трансгенного</a> растения. Интересующий нас ген кодирует бактериальный белок, токсичный для насекомых. Чтобы ген экспрессировался в <a href="/info/105476">растительной клетке</a>, его 5 -конец соединяют с <a href="/info/200430">растительным промотором</a>, а З -конец с <a href="/info/1404150">сайтом полиаденилирования</a>. Модифицированный ген токсина встраивают в плазмиду, содержащую кроме него и маркерный ген (например, ген устойчивости к канамицину), по которому можно проводить селекцию. <a href="/info/1384511">Плазмида сконструирована</a> <a href="/info/461013">таким образом</a>, чтобы и ген токсина, и маркерный ген были окружены особыми повторами, размером 25 нуклеотидных пар, которые в норме окружают Т-ДНК. Плазмиду из клеток Е. oli переносят в Agroba terium, где на отдельной <a href="/info/759901">плазмиде присутствуют</a> <a href="/info/200351">гены вирулентности</a>. Если такую Agroba terium культивировать вместе с листовыми дисками, <a href="/info/91036">продукты генов</a> вирулентности узнают повторы в Т-ДНК и перенесут ДНК, содержащую маркер и гены гоксина в хромосому растения. Все клетки листового диска затем заставляют делиться, помещая экспланты на соответствующую <a href="/info/185599">питательную среду</a>, однако способность делиться и образовывать каллус сохранят лишь те клетки, которые содержат ген <a href="/info/1409321">селективного маркера</a>. Из каллуса затем получают <a href="/info/200374">трансгенные растения</a>, которые экспрессируют
    Предварительно клонированные гены вводят в клетку животных различными путями. Суть одного из них состоит в трансформации клеток требуемым геном, соедршенным с одним из генов, для которых осуществляется селекция. Для идентификации и последующего размножения клеток, содержащих интегрированную ДНК, был разработан метод, получивший название метода маркера. Примером может служить метод получения клеток, дефектных по синтезу фермента тимидинкиназы (ТК -клетки). Такие клетки трансформировались фрагментами ДНК вируса герпеса (HSV), содержащего ген фермента ТК, и после трансформации они приобретали способность к синтезу фермента на селективной среде, т.е. становились ТК -клетками. Клетки ТК легко отличаются от клеток TK , поскольку способны расти на средах с ами-ноптерином (ингибитор, блокирующий определенные стадии биосинтеза нуклеотидов), гипоксантином и тимидином. Следовательно, в данном случае для трансформации клеток животных бьши использовапы гибриды бактериальных плазмвд с геном ТК из вируса герпеса. Для этого предварительно проводили клонирование и идентификацию генов в клетках Е. соИ и затем полученная рекомбинантная плазмида вводилась в ТК -клетки. Анализ мето- [c.125]

    Конъюгативный перенос бактериальных генов в клетки животных. Перенос генов во время конъюгации бактериальных клеток, когда мужские и женские клетки вступают в контакт друг с другом через объединяющий их цитоплазматический мостик, является широко распространенным и хорошо изученным генетическим явлением [224, 225]. Недавно была продемонстрирована возможность конъюгативного переноса ДНК из бактериальных клеток в культивируемые клетки животных [226]. В этой серии экспериментов В.Л. Ватерсу удалось показать, что гены устойчивости к антибиотикам, находящиеся в составе конъюгатив-ной плазмиды Е. соН, переносятся с низкой частотой в клетки яичников китайских хомячков СНО К1 из бактериальных клеток, давая возможность клеткам-реципиентам выживать на селективной среде в присутствии соответствующих антибиотиков. При этом не происходило поглощения бактериальных клеток клетками животных посредством эндоцитоза, и перенос имел место в присутствии ДНКазы в питательной среде, что исключало непосредственный захват ДНК клетками из культуральной жидкости. Чужеродная ДНК реплицировалась в клетках животных, а экспрессия генов генетических маркеров происходила лишь в том случае, если гены находились под контролем эукариотических промоторов. Хотя конъюгативный перенос генов бактерий в клетки дрожжей, а также растений (Ti-плазмиды) известен давно, обсуждаемая работа впервые продемонстрировала возможность непосредственного обмена генами между бактериями и клетками высших животных. В том случае, если данный процесс удастся оптимизировать, у генной инженерии появится дополнительная возможность введения очень больших молекул ДНК в клетки животных, в том числе и в целях генотерапии. [c.154]

    Биохимическое разложение основной массы разлитой нефти протекает очень медленно, так как в природе пе существует какого-либо определённого вида микроорганизмов, способного разрушить все компоненты нефти. Бактериальное воздействие отличается высокой селективностью, и полное разложение нефти требует воздействия многочисленньк бактерий разньк видов, причем для разрушения образующихся нромежуточньк продуктов требуются свои микроорганизмы. Легче всего протекает микробиологическое разложение парафинов. Более стойкие циклонарафины и ароматические углеводороды сохраняются в океанской среде гораздо дольше. [c.39]

    Стимуляция разработки безопасных для окружающей среды методов защиты без применения пестицидов— несомненно, важнейщая социальная задача. В ФРГ, несмотря на серьезные предварительные достижения в государственном плане, до сих пор не удалось добиться промышленного производства средств защиты на основе селективных, безусловно безопасных для среды вирусных, бактериальных или грибных препаратов. Для преодоления этого препятствия необходимо изыскивать возможности нового типа. Так, полуофициальные организации или учреждения могли бы взять на себя реализацию достижений государственных институтов. [c.310]

    Некоторые эписомы инфекционны, поскольку их копии могут переходить из одной бактериальной клетки в другую, в которой исходно эписом данного типа не было. Генетические функции, необходимые для репликации, инфекционности и способности вытеснять другие эписомы, кодируются эписомальной ДНК. Во многих эписомах содержатся также гены, не необходимые для их существования. Например, некоторые инфекционные эписомы содержат гены устойчивости к определенным антибиотикам. Бактерии, в которые попадает такой фактор устойчивости, становятся устойчивыми к данному антибиотику. Имея высокую селективную ценность в современных условиях насыщения антибиотиками, факторы устойчивости быстро распространяются среди различных щтаммов и видов бактерий, в том числе патогенных. Это создает серьезные проблемы для медицины. Особенно опасна способность факторов устойчивости накапливать гены, обусловливающие устойчивость к разным антибиотикам, и передавать ранее чувствительным бактериям множественную устойчивость. [c.231]

    Вывод, к которому пришли Луриа и Дельбрюк, состоял в том, что Tl -KfleTKH возникли спонтанно в отсутствие селективного фактора (фага Т1). Этот вывод основывался на статистических аргументах-большей изменчивости числа Tl колоний среди чашек, засеянных клетками из малых пробирок, по сравнению с теми, на которые высевали пробы большой пробирки. Прямое доказательство спонтанной природы Т1 -клеток были получены Джошуа Ледерберг и Эстер Ледерберг в 1952 г. (см. рис. 8.1). Около 10 клеток чувствительного к фагу Т1 штамма Е. соИ высевали на чашку с питательной средой и культивировали в течение нескольких часов до появления бактериальных колоний. Эти колонии перепечатывали на бархат, а с него на 3 чашки, предварительно засеянные фагом Т1 (рис. 20.15). Тот факт, что Т1 -колонии появлялись на всех трех чашках в одних и тех же точках, указывал на то, что эти колонии происходят от конкретных колоний на исходной чашке и что фагоустойчивость возникла до контакта с этим фагом. Если бы появление Tl -KofloHnfi было индуцировано фагом Т1, то такие колонии располагались бы на разных чашках в разньа точках. Этот эксперимент окончательно убедил биологов в том, что бактерии содержат спонтанно мутирующие гены, подобно всем другим организмам. [c.26]

    Чтобы избежать получения неоднозначных результатов, чрезвычайно важно уметь надежно сохранять и вести селекцию специальных бактериальных штаммов (приложение 1 [ПА]). Ниже описаны основные бактериологические методики конструирования рекомбинантных векторов для трансформации растений. Большинство бактер)иальных штаммов несет опециф ичные селективные маркеры, часто внехромосомные сохранность маркеров следует регулярно тестировать, чтобы избежать возможной контаминации, мутации или утраты специфичных плазмид. Многие штаммы будут использоваться часто, тогда как другие от случая к случаю таким образом, необходимы методы как быстрого размножения генетически чистых бактериальных колоний, используемых в качестве инокулята для засева культур больших объемов, так и длительного хранения важных штаммов. В приложении 1 [ИВ] приведены среды для селекции часто используемых бактериальных штаммов. [c.39]

    Биохимическое (микробиологическое) воздействие бактерий, грибков и других микроорганизмов на компоненты нефти гораздо шире и охватывает самые разнообразные вещества по сравнению с процессами испарения и растворения. Однако не существует какого-либо одного микроорганизма, способного разрушить все компоненты определенного вида сырой нефти. Бактериальное воздействие характеризуется высокой селективностью и полное разложение всех компонентов нефти требует воздействия многочисленных бактерий различных видрв. При этом образуется ряд промежуточных продуктов, для разрушения которых требуются свои организмы. Парафиновые углеводороды наиболее легко разлагаются бактериями. Следовательно, более стойкие циклопарафино- вые и ароматические углеводороды исчезают из океанской среды с гораздо меньшей скоростью. [c.352]


Смотреть страницы где упоминается термин Бактериальные селективная среда: [c.462]    [c.38]    [c.135]    [c.92]    [c.71]    [c.72]    [c.277]    [c.222]    [c.228]    [c.218]    [c.159]    [c.236]    [c.260]    [c.354]    [c.349]    [c.347]    [c.73]    [c.41]    [c.73]    [c.75]    [c.172]    [c.442]    [c.229]    [c.294]    [c.158]    [c.439]    [c.233]    [c.9]   
Генная инженерия растений Лабораторное руководство (1991) -- [ c.82 ]




ПОИСК







© 2025 chem21.info Реклама на сайте