Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия мера специфичности

    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]


    Взаимодействие фермента с ингибитором часто в такой же мере специфично, как и взаимодействие с субстратом или коферментом. На этом основано [c.87]

    Полярные протонные растворители легко сольватируют как анионы, так и катионы. Неорганические катионы взаимодействуют со свободными электронными парами, тогда как анионы сольватируются путем образования водородных связей. Крупные четвертичные аммониевые ионы не сольватируются [37] или по крайней мере сольватируются не специфично, т. е. сильного непосредственного взаимодействия с растворителем не существует. В этих растворителях имеет место высокая степень диссоциации на свободные сольватированные ионы. Однако многие анионы обладают относительно низкой реакционноспособностью (нуклеофильностью) из-за сильного экранирования сольватной оболочкой. [c.18]

    Несомненно, что и биологические функции, и механические свойства полисахаридов и углеводсодержащих биополимеров в большой мере определяются конформацией макромолекулы и распределением в ней реакционноспособных групп. Все эти факторы зависят, в конечном счете, от первичной структуры полимера. Поэтому понимание факторов, определяющих специфичность биологической функции углеводсодержащих соединений и технические свойства полисахаридов, зависит в первую очередь от развития теоретических представлений о связи между строением, конформацией, реакционной способностью и физико-химическими свойствами полисахаридов и смешанных биополимеров, содержащих олиго- и полисахаридные цепи. Установление этих связей является предпосылкой для осуществления направленного синтеза соответствующих физиологически активных веществ и направленной модификации полисахаридов для получения материалов с заранее заданными свойствами. Поэтому исключительно важной задачей является разработка надежных методов установления первичной структуры полисахаридных цепей, требующих минимальной затраты времени и минимального количества материала. Не менее важны эффективные подходы к точной характеристике конформаций полисахаридной цепи в целом и отдельных ее участков, вплоть до моносахаридных звеньев. Очевидна также необходимость изучения реакционной способности полисахаридной цепи, ее отдельных звеньев и различных функциональных групп, что позволит понять механизм взаимодействия углеводсодержащих биополимеров с их партнерами в биологических системах (например, с антителами при иммунологических реакциях), наметить целесообразный путь модификации природного полимера для придания ему нужных свойств и т. д. [c.625]


    Концентрационные изменения структуры растворов сахарозы рассматривались в [77, 78]. Авторы этих работ пришли к выводу, что в различных областях диапазона концентраций взаимодействие сахарозы с водой специфично. В разбавленных растворах, когда число молекул воды, связанных с молекулой сахарозы, превышает число гидрофильных активных центров, структура воды остается практически невозмущенной. Гидратная оболочка (или ячейка [78]) препятствует сближению молекул сахарозы, что равносильно отталкиванию. По мере увеличения концентрации толщина водного окружения падает. Однако, как считают авторы [78], раствор все еще находится в состоянии максимальной стабилизации вплоть до некоторой предельной концентрации (0,05 м.д. [77], 0,06 м.д. [78]). Этот состав отвечает структуре клатратного типа (клатрат 1 [100]) и обладает максимальной плотностью. [c.103]

    Комплексообразующие органические реагенты занимают значительное место в аналитической химии, поскольку они обладают высокой чувствительностью и селективностью взаимодействия с ионами металлов. Большинство ранних работ в этой области отличаются эмпиричностью, направленностью на поиск специфичных или по крайней мере высокоселективных реагентов на ионы металлов. Селективность часто может быть достигнута при решении некоторых задач выбором pH и концентрации реагента или применением маскирующих агентов, углубляющих различия в свойствах металлов. Число органических реагентов в настоящее время столь велико, что вряд ли возможно перечислить все реагенты на ионы металлов. Их используют в двух видах разделения — осаждении и экстракции. Кроме того, некоторые реагенты применяют в газовой хроматографии в виде летучих металлорганических соединений. Фазовые равновесия в процессе экстракции более сложны, чем при осаждении (см. гл. 23). [c.450]

    По мере увеличения специфичности межмолекулярного взаимодействия возрастает его направленность. Это особенно важно при образовании пространственных комплексов с комплексообразующими ионами металлов, в частности с ионами u +. Эта особенность была использована в жидкостной хроматографии для разделения смесей оптических изомеров, в том числе аминокислот. В лекциях 4 и 5 были указаны два пути иммобилизации лигандов для этой цели. Один из них заключается в химической прививке лигандов, несущих комплексообразующий ион, к адсорбенту-носителю (см. схему 5.26). Такими лигандами могут служить азот аминогруппы и кислород карбоксильной группы. Так, например, в случае Ь-оксипролина  [c.330]

    Можно рассматривать с известным приближением такие системы, как модели неизмеримо более гибких и пластичных природных катализаторов — ферментов. По-видимому, слишком строгое и неизменное следование кодовым правилам, определяемым жесткой геометрией взаимодействующих частиц, настолько ограничивает воз.можности реакций, что биологическая эволюция выдвинула на первый план именно белковые катализаторы, обладающие громадным числом конформационных возможностей, и связала их с такими субстратами, молекулы которых тоже в известной мере способны к деформациям. От этого кодовые требования стали менее строгими, а для ферментов открылись новые пути повышения активности и специфичности действия. [c.323]

    Жирные кислоты Сх — С4, способные образовывать более прочные водородные связи, на сорбентах с эфирными функциональными группами удерживаются сильнее спиртов с равным числом атомов углерода в молекуле. Отношения удерживаемых объемов нормальных кислот и нормальных спиртов с равным числом атомов углерода в молекуле, приведенные в табл. 11, показывают, что сорбенты с эфирными функциональными группами обладают специфичностью молекулярного взаимодействия. При этом по мере увеличения длины углеродной цепочки в разделяемых молекулах спирта и кислоты уменьшается вклад специфического взаимодействия в общую энергию межмолекулярного взаимодействия молекула группы В—полярный полимерный сорбент. [c.42]

    Роль белка или белковой части фермента (апофермента) состоит помимо прямого участия в катализе в связывании в определенном участке кофактора и в связывании субстрата или субстратов с определенной ориентацией их относительно каталитически активных групп. При этом осуществляется отбор строго определенных субстратов из множества сходных молекул, в принципе способных к таким же реакциям. Например, специфичность кар бокс и пептидаз именно к С-концевым остаткам в значительной мере обусловлена тем, что в связывании и ориентации относительно атома цикла принимают участие положительно заряженные остатки аргинина, которые взаимодействуют с концевой карбоксильной группой гидролизуемого пептида. [c.223]


    Согласно Киселеву [382], ослабление специфичности взаимодействия полярных веществ химически модифицированными кремнеземами объясняется уменьшением числа гидроксильных групп на их поверхности. Резкое ослабление неспецифического взаимодействия при адсорбции апо-лярных веществ вызвано, по его мнению, отодвиганием адсорбирующихся молекул от кремнеземного остова. При этом мерой вклада специфических взаимодействий в общую энергию взаимодействия служит разность между теплотой адсорбции на специфическом адсорбенте и теплотой адсорбции этих же молекул на неспецифическом адсорбенте [383]. [c.172]

    В этой главе затрагиваются главным >образом явления, относящиеся к ионам при бесконечном разбавлении. Однако по мере того, как уменьшается среднее число молекул растворителя, разделяющих два иона, начинают проявляться интересные и специфические кооперативные сольватационные эффекты. В термодинамике эти взаимодействия молекул растворенного вещества друг с другом через посредство растворителя рассматривают просто как взаимодействия между молекулами растворенного вещества и учитывают их с помощью коэффициентов активности у . Такой подход подробно описан в гл. 1. Однако структурные аспекты рассматриваются в данной главе (разд. 3 и 4). При еще более высоких концентрациях или в средах с низкой диэлектрической проницаемостью количество вовлекаемых в эти взаимодействия молекул становится строго определенными (1 и 0), и возникает все более структурно-специфичная конкуренция между растворителем и противоионом (гл. 3). [c.219]

    Получение ароматических нитросоединений не представляет больших затруднений. Несколько более сложным, требующим особых мер предосторожности, является получение нитропроизводных фенолов вследствие специфичности их свойств (например, взаимодействие с металлами, приводящее к образованию высокочувствительных ВВ). [c.19]

    Можно ожидать, что 1,3-диполи обладают двойственной реакционной способностью, т. е. могут выступать как электрофилы и как нуклеофилы. В действительности какое-то одно свойство обычно превалирует озон является электрофильным реагентом, о чем можно судить по увеличению скорости его взаимодействия с олефинами по мере замещения водорода в этилене на алкильные группы. Диазоалканы, напротив, проявляют нуклеофильную активность, реагируя только с двойными связями, обедненными электронами. Отсюда, казалось бы, напрашивается представление о двухстадийном механизме реакции 1,3-диполярного присоединения. Однако ряд фактов говорит о том, что это процесс синхронный (или почти синхронный). Так, скорость реакции 1,3-ди-полярного присоединения не зависит от полярности растворителя. Это значит, что разделение зарядов в переходном состоянии реакции во всяком случае не больше, чем в исходном соединении. Реакции 1,3-диполярного присоединения протекают цис-стерео-специфично. Это говорит о том, что в переходном состоянии невозможно свободное вращение вокруг С—С-связи олефина. [c.271]

    В этих процессах химическое взаимодействие имеет место между двумя органическими соединениями, минеральное же сырье (А1С1з) играет роль катализатора, при этом в значительной мере специфичного. [c.319]

    Если два каких-либо атома находятся на расстоянии 3-4 Л друг от друга, то между ними возникает неспецифическое притяжение. Такое притяжение, называемое вандер-ваальсовым взаимодействием, менее специфично и значительно слабее, чем электростатические взаимодействия или водородные связи, однако оно имеет не менее важное значение в биологических системах. В основе возникновения вандерваальсовых взаимодействий лежит тот факт, что распределение электронного заряда вокруг атома меняется во времени. В любой взятый момент времени распределение заряда не является полностью симметричным. Эта преходящая асимметрия электронного заряда одного атома вызывает изменение распределения электронов вокруг соседних атомов. По мере сближения двух атомов до так называемого расстояния вандерваальсова контакта сила притяжения между ними возрастает (рис, 6.27). На расстоянии, более коротком, чем контактное, начинают преобладать очень большие силы отталкивания, поскольку происходит перекрывание двух внешних электронных облаков. Контактное расстояние между атомами кислорода и углерода, например, составляет 3,4 А, т. е, сумму контактных радиусов атома О (1,4 А) и С (2,0 Л), [c.124]

    Специфичность достигается комплементарностью профилей контактных поверхностей, а также структурным соответствием доноров и акцепторов водородных связей и остатков, образующих солевые мостики. Для биологических процессов важна не только эффективность взаимодействия, но и его специфичность. Каким образом достигается специфичность во взаимодействиях белок — белок Как отмечалось выше, для получения большого значения величины АОпереиос контактирующие поверхности должны быть комплементарны. Кроме того, должны быть пространственно сближены и соответствующим образом ориентированы доноры и акцепторы водородных связей в противном случае энергия ассоциации резко ослабляется. В еще большей мере это относится к скрытым солевым [c.125]

    Специфичные сахарные остатки выполняют функции узнавания. Последние два примера табл. 10.3 показывают, что сахара выполняют важную роль в специфических взаимодействиях между поверхностями клеток и растворимыми макромолекз лами. Межклеточное распознавание, например, при образовании тканей из различных типов клеток также основано на структурном разнообразии гликопротеидов [709, 713]. Сахара действительно являются подходящими элементами образования некоторых специфических структур [85]. Если из трех различных аминокислот можно составить только шесть различных пептидов (используя все перестановки), то из трех сахарных остатков можно образовать по меньшей мере в десять раз больше первичных структур в связи с этим многие из возможных объединений моносахаридов используются in vivo. Однако механизмы узнавания с участием сахарных остатков часто основываются скорее на стохастических, чем на стехиометрических процессах, поскольку синтезу сложных углеводов недостает точности белкового синтеза. [c.270]

    Хотя выдвинутая Фишером гипотеза ключа и замка оказалась весьма плодотворной и объясняет многие общие закономерности субстратной специфичности, по мере накопления в последние годы детальной информации о взаимодействиях типа фермент-молекула ее недостатки становились все более очевидными. В буквальном смысле эта теория подразумевает наличие жесткого центра связывания. В то же время имеется большое число данных, как рентгеноструктурных, так и прямых спектрофотометрических и кинетических исследований ферментов в растворе, о конформационной мобильности белков. Мы видели, что тирозин-248 карбоксипептидазы при связывании глицилтирозина сдвигается не менее чем на 1,2 нм, явно меняя природу и форму как участка связывания, так и каталитического центра (см. разд. 24.1.3.4). Это, возможно, крайний случай, однако при наличии рентгеноструктурчых [c.515]

    Возрастает применение афинной хроматографии на группоспецифических адсорбентах. Так, путем использования лиганда, специфичного в отношении группы ферментов, можно избежать ряда трудностей, присуш,их созданию более специфичного лиганда. При использовании такого, менее специфичного, адсорбента в афинной хроматографии несколько уменьшается селективность адсорбции, что, однако, можно компенсировать правильным подбором условий элюции [128]. Коферменты представляют собой почти идеальные группо-специфические лиганды, поскольку они обычно взаимодействуют с данной группой ферментов. У каждого из таких ферментов имеется по крайней мере два специфических центра связывания—-один для кофермента (общий для всех членов группы) и один (или более) — для данного специфического субстрата. [c.643]

    Пространственная структура зависит не от длины полипептидной цепи, а от последовательности аминоютслотных остатков, специфичной для каждого белка, а также от боковых радикалов, свойственных соответствующим аминокислотам. Пространственную трехмерную структуру или конформацию белковых макромолекул образуют в первую очередь водородные связи, а также гидрофобные взаимодействия между неполярными боковыми радикалами аминокислот. Водородные связи играют огромную роль в формировании и поддержании пространственной структуры белковой макромолекулы. Водородная связь образуется между двумя электроотрицательными атомами посредством протона водорода, ковалентно связанного с одним из этих атомов. Когда единственный электрон атома водорода участвует в образовании электронной пары, то протон притягивается соседним атомом, образуя водородную связь. Обязательным условием образования водородной связи является наличие хотя бы одной свободной пары электронов у электроотрицательного атома. Что касается гидрофобных взаимодействий, то они возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды, которая вытесняется на поверхность белковой глобулы. По мере синтеза белка неполярные химические группировки собираются внутри глобулы, а полярные вытесняются на ее поверхность. Таким образом, белковая молекула может быть нейтральной, заряженной положительно или же отрицательно в зависимости от pH растворителя и ионо-генных групп в белке. К слабым взаимодействиям относят также ионные связи и ван-дер-ваальсовы взаимодействия. Кроме того, конформация белков поддерживается ковалентными связями 8—8, образующимися между двумя остатками цистеина. В результате гидрофобных и гидрофильных взаимодействий молекула белка спонтанно принимает одну или несколько наиболее термодинами-чесю выгодных конформаций, причем, если в результате каких-либо внешних воздействий нативная конформация нарушается, возможно полное или почти полное ее восстановление. Впервые это показал К. Анфинсен на примере каталитически активного белка рибонуклеазы. Оказалось, что при воздействии мочевиной или р-меркаптоэтанолом происходит изменение ее конформации и, как следствие, резкое снижение каталитической активности. Удаление мочевины приводит к переходу конформации белка в исходное состояние, и каталитическая активность восстанавливается. [c.35]

    Возникает вопрос насколько универсальна данная окислительная система в связи с большим количеством катализируемых ею реакций Было доказано существование набора изоэнзимов цитохрома Р-450, причем каждый из них имеет свои собственные типы субстратов, по отношению к которым он имеет повышенную специфичность. Молекулярные формы цитохрома Р-450 являются истинными изоэнзимами, т. е. они кодируются различными генами или различными аллелями одного гена, отличаются некоторыми физико-химическими свойствами, но имеют одну и ту же геминную группировку. Установлено, что все исследованные организмы от бактерий до человека имеют набор изоэнзимов цитохрома Р-450. Субстраты могут связываться с цитохромом Р-450 по крайней мере двумя различными способами. Одна группа субстратов связывается с белковой частью цитохрома Р-450, в то время как другая группа субстратов взаимодействует с железом геминной группировки энзима. [c.512]

    На основании классификации молекул и адсорбентов но их способности к неспецифическим и специфическим молекулярным взаимодействиям, предложенной Киселевым [21], можно рассматривать модифицирование поверхности кремнезема как ослабление специфичности взаимодействия за счет уменьшения числа гидроксильных групп, а также как резкое ослабление неспецифического взаимодействия благодаря отодвиганию адсорбирующихся молекул от кремнеземного остова. Мерой вклада специфических локальных взаимодействий молекул с сосредоточенной электронной плотностью в общую энергию взаимодействия является, как это показано в работе [22], разность между теплотой адсорбции на специфическом адсор бенте и теплотой адсорбции этих же молекул на соответствующем песне цифическом адсорбенте. [c.153]

    Книгу, посвященную водородной связи, уместно начать с этого удивительно правильного описания структуры воды, которое было дано Лати-мером и Родебушем 40 с лишним лет назад [1201]. Поразительно, что каждое слово этого описания остается приемлемым и в свете современных химических знаний. Однако истинное историческое значение их работы состоит в том, что они впервые вторглись в пограничную область химии, которая и в наше время остается недостаточно ясной. Это область взаимодействий, промежуточных между химическими связями и гораздо более слабыми, менее специфичными взаимодействиями, которые заставляют любое вещество превращаться в жидкость при достаточно низкой температуре. Обсуждению водородной связи следует предпослать рассмотрение этих двух крайних случаев .  [c.11]

    Хемосорбцию часто называют специфичной, ван-дер-ваальсову адсорбцию — неспецифичной. Термин специфичный в известной мере неясен, он никогда пе был точно определен. Может быть, мы сможем подойти ближе к истинному значению этого термина, если будем рассматривать адсорбцию в первом слое — хемосорбцию или физическую адсорбцию, — зависящей от двух факторов от величины поверхности и от энергии взаимодействия между поверхностью и газом. Первый является неспецифичным фактором, последний — специфичным фактором при адсорбции. В ван-дер-ваальсовой адсорбции энергии взаимодействия между данным газом и разными адсорбентами не очень различны таким образом, фактор поверхности более важен, чем энергетический фактор. В хемосорбции справедливо обратное, энергетический фактор более важен. Поэтому, строго говоря, не точно говорить, что в одном случае адсорбция неспецифична, в другом — специфична было бы правильнее предполагать, что ван-дер-ваальсова адсорбция лишь слегка специфична, в то время как хемосорбция в значительной степени специфична. [c.446]

    Биоспецифические сорбенты (БСС) образуются в результате закрепления на поверхности носителя веществ (лигандов) с определенной биохимической специфичностью. Связанный с носителем лиганд сохраняет, по крайней мере частично, способность к взаимодействию со строго определенными веществами. Результатом этого взаимодействия является адсорбция веществ на БСС. Адсорбция имеет обратимый характер вещество можно десорбировать посредством изменения ионной силы раствора или же специфическими элюентами. Первые БСС получены Аксеном, Поратом и Эрнбаком в 1967 г. (А х e n R., Porath J., Ernba k S., Nature, 1967, v. 214, No. 5095, p. 1302—1304). [c.219]

    По мере понижения диэлектрической проницаемости среды взаимодействия между образующимися ионами и ионами, введенными в систему извне, становятся все более сильным и специфичным. Кроме того, добавленные ионы стремятся к образованию ассоциатов, так что в этом случае вместо ионного катшшза имеет место катализ ионными парами. [c.184]

    В противополошность только что приведенным при мерам, иногда ван-дер-ваальсова адсорбция бывает в высшей степени специфична и настолько, что ее можно сравнивать в этом отношении с хемосорбцией. Возможно, что наиболее хорошо известным примером такой специфичности является различие во взаимодействии угля и силикагеля с бензолом и водой. Чанеем, Рейем и Сент-Джоном было установлено, что если встряхивать смесь бензола с водой, с углем и силикагелем, то уголь будет адсорбировать бензол, и при [c.449]

    Интересно выяснить, в какой мере действие той или иной модели указанного типа специфично по отношению к субстрату. В природе активные группы дегидраз ДПН и ТПН способны, взаимодействуя с субстратом и соответствующим белком, образовывать специфически действующие дегидразные систе.мы. Поэтому до рассмотрения моделей [c.161]

    Специфичность ферментов можно подразделить на следующие 1) абсолютную специфичность, например, уреаза, ускоряющая гидролиз мочевины, не оказывает никакого действия на ее производные 2) абсолютную групповую специфичность, когда фермент катализирует превращение определенных категорий соединений, например, алкогольдегидрогеназа катализирует окисление в присутствии специфического субстрата (см, ниже) этилового спирта в альдегид, но она способствует, хотя и в меньшей степени, и окислению неразветвленных спиртов нормального строения 3) относительную групповую специфичность, которой обладает трипсин, способный гидролизовать пептидную связь и действовать как экстраза при условии, что карбонильная группа пептидной или эфирной связи принадлежит лизииу или аргииину----аминокислоте, боковая цепь которой имеет положительный заряд 4) стереохимическую специфичность (ферменты способны отличать свой субстрат от его оптического изомера, например, оксидаза -аминокислот нэ действует на -аминокислоты). Стереоспецифичность указывает, что во взаимодействии субстрата с ферментом должно участвовать по крайней мере три из четырех заместителей у оптически активного атома углерода. [c.507]


Смотреть страницы где упоминается термин Взаимодействия мера специфичности: [c.6]    [c.241]    [c.35]    [c.437]    [c.604]    [c.90]    [c.35]    [c.146]    [c.224]    [c.229]    [c.157]    [c.136]    [c.163]    [c.501]    [c.206]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.79 ]




ПОИСК







© 2024 chem21.info Реклама на сайте