Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

клеток продукция

    Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. В состав растений входят около 60 химических элементов. Для образования ткани растения, его роста и развития требуются в первую очередь углерод, кислород и водород, образующие основную часть растительной массы, далее азот, фосфор, калий, магний, сера, кальций и железо. Источниками веществ, необходимых для питания растений, служат воздух и почва. Из воздуха растения извлекают основную массу углерода в виде диоксида углерода, усваиваемого путем фотосинтеза, а из почвы — воду и минеральные вещества. Некоторое количество диоксида углерода воспринимается корневой системой растений из почвы. Среди минеральных веществ особенно важны для жизнедеятельности растений азот, фосфор и калий. Эти элементы способствуют обмену веществ в растительных клетках, росту растений и особенно плодов, повышают содержание ценных веществ (крахмала в картофеле, сахара в све-кле, фруктах и ягодах, белка в зерне), повышают морозостойкость и засухоустойчивость растений, а также их стойкость к заболеваниям. При интенсивном земледелии почва истощается, т. е. в ней резко снижается содержание усваиваемых растениями минеральных веществ, в первую очередь растворимых в воде и почвенных кислотах соединений азота, фосфора и калия. Истощение почвы снижает урожайность и качество сельскохозяйственных культур. Уменьшение содержания питательных веществ в почве необходимо постоянно компенсировать внесением удобрений. Ввиду огромных масштабов потребления минеральные удобрения— наиболее крупнотоннажный вид химической продукции, годовое количество которой составляет десятки миллионов тонн. [c.143]


    Предприятию, работающему на дровах, необходимо знать их теплотворную способность — для расчета удельных расходов условного топлива на единицу продукции. Проба дров поступает в лабораторию, постоянно обслуживающую данное предприятие, например в его собственную. Предприятие получает дрова всегда определенной породы, например осиновые, или смесь пород с более или менее постоянным участием в смеси каждой породы всегда сухопутной доставки или, наоборот, всегда сплавные произведенные ранее анализы дали близкие между собой и к данным общепринятых справочников результаты по содержанию золы и теплотворной способности горючей массы. В этом случае целесообразно производить анализ только на определение содержания влаги и при вычислении принять величины и по средним данным прежних анализов или по справочнику (см. вклейку табл. 22, клетка 1—4). [c.280]

    Биохимические производства основаны на получении продуктов при помощи живых организмов. Основным производителем продукции являются микроорганизмы (бактерии, дрожжи) и продукты их жизнедеятельности. Микробиологический синтез происходит в клетках микроорганизмов или вне их под действием выделяемых микроорганизмами ферментов — катализаторов (см. разд. 4.6.1). Именно [c.426]

    Характеристика продукции, сырья и полуфабрикатов. Дрожжи — одноклеточные микроорганизмы, относящиеся к классу грибов сахаромицетов. Дрожжевая клетка содержит в среднем 67 % воды и 33 % сухого вещества. Сухое вещество дрожжевой клетки содержит 37...50 % белков, 35...40 % углеводов, 1,2...2,5 % сырого жира и 6... 10 % зольных веществ. [c.84]

    Известно, что бактериальная клетка не допускает избыточной продукции рибосомных белков. Практически их синтезируется столько, сколько требуется для сборки рибосом, в соответствии с количеством образующейся рибосомной РНК, и сколько-нибудь серьезного избытка свободных рибосомных белков в нормальной клетке не бывает. Поразительно одинаковый и координированный уровень продукции всех 52 рибосомных белков достигается несмотря на то, что их гены вовсе не организованы в единый регулируемый блок, а представлены независимыми приблизительно 16 оперонами, распределенными по геному клетки. Оказалось, что координированно одинаковая продукция практически всех рибосомных белков и отсутствие их избыточной продукции поддерживаются регуляторным механизмом, обеспечивающим репрессию трансляции избытком белка (трансляционная регуляция по принципу обратной связи). [c.237]


    Как и в больщинстве природных сред, биологические, а особенно, микробиологические процессы имеют больщое значение в дельтах. Во многих дельтах высокие концентрации твердых частиц делают воду слишком мутной, что не позволяет развиваться фитопланктону. Однако в мелководных дельтах или в дельтах с низкой мутностью, а также у их направленных к морю окраин, где концентрации взвешенных твердых частиц низкие, степень освещения может быть достаточной для поддержания роста фитопланктона. Дельты часто дают защищенные укрытые гавани, обычно являющиеся центрами торговли и коммерции. В результате в развитых и развивающихся странах берега дельт часто служат местом расположения крупных городов. Слив отходов и особенно сточных вод населением этих городов приводит к увеличению концентрации питательных веществ, и в местах, где достаточно света, имеет место большая первичная продукция (см. п. 3.7.5). В динамичной среде дельты разбавление ее богатой фитопланктоном воды удаленными от берега водами с низким содержанием фитопланктона происходит с большей скоростью, чем могут расти клетки (популяции фитопланктона при оптимальных условиях удваиваются во временном масштабе, равном дню или около того). Таким образом, рост популяций фитопланктона часто ограничивается скорее этим процессом разбавления, чем доступностью света или питательных веществ. [c.157]

    Стратегия переноса функциональной единицы наследственности (гена) из одного организма в другой была разработана американскими учеными Стэнли Коэном и Гербертом Бойером в 1973 г. И Коэну, и Бойеру, и многим другим было ясно, что технология рекомбинантных ДНК предоставляет огромные возможности. Как в то время отмечал Коэн, ...есть надежда, что удастся ввести в [бактериальную клетку] Е. соН гены, ассоциированные с метаболическими или синтетическими функциями, присущими другим биологическим видам, например гены фотосинтеза или продукции антибиотиков . [c.16]

    Максимальная удельная скорость роста культуры (ц ,ах) составляла примерно 0,66 ч в первом биореакторе и 0,54 ч во втором, что соответствовало времени удвоения 63 и 77 мин. Свежую среду непрерывно добавляли в ферментер, где росли клетки, со скоростью 2 л/ч, а из ферментера, где происходила индукция, отбирали такой же объем суспензии. Поскольку рабочие объемы биореакторов различались, клетки находились примерно 5 ч в биореакторе, где происходил рост, и 2 ч в биореакторе, где осуществлялась индукция. Различие во времени пребывания клеток в биореакторах было необходимо для оптимизации числа клеток, выхода продукции и стабильности ДНК-лигазы. Само время пребывания клеток в разных реакторах можно варьировать изменением их относительного рабочего объема и объема поступающих в первый биореактор питательных веществ. [c.360]

    Кроме основного сырья, используют минеральные соли, необходимые для обеспечения роста и жизнедеятельности дрожжевой клетки Качество сырья и вспомогательных материалов играет весьма важную роль в производстве, обусловливая эффективность процессов и качество готовой продукции [c.190]

    Помимо ацетилхолина на обкладочные клетки оказывает стимулирующее влияние целый ряд агентов. Важная роль среди них отводится гистамину, который продуцируется тучными клетками (гистаминоцитами), в большом количестве разбросанными по всей слизистой оболочке желудка. В свою очередь гистамин взаимодействует с селективными рецепторами к гистамину — рецепторами типа Н2, расположенными на обкладочных клетках Продукция гистамина также контролируется чолинергиче-скими механизмами. Обширный круг экспериментальных и клинических данных демонстрирует ведущую роль в патогенезе язвенной болезни нарушений продукции и регуляции гистамина. [c.206]

    Ген per экспрессируется в нервной и многих не-нервных тканях. Естественно, для оценки роли этого гена в поведении особенно важен анализ экспрессии PER и TIM в центральной нервной системе. Оба продукта выявлены в фоторецепторах и латеральных нейронах ЦНС (LNs). Фоторецепторы обнаруживают циклическую динамику колебаний содержания PER и TIM, и это опосредует ритм циркадной фоточувствительности. Исследование различных per трансгенов, генетических мозаиков и некоторых мутантов показало, что маленькая группа LNs, экспрессирующих per и tim, является комплексом пейсмекерных клеток, ответственных за генерацию циркадных локомоторных циклов. Было также обнаружено, что ббльшая часть белка PER головного мозга синтезируется в глиальных клетках. В торакальном ганглии экспрессия PER ограничивается только глиальными клетками. Продукция белка PER в торакальном ганглци контролирует бО-секундную песню любви у самцов Drosophila melanogaster. Мутанты, изменяющие длительность этой песни, параллельно изменяют и циркадный ритм. Очевидно, экспрессирующая per ген глия регулирует каким-то образом функционирование нейральных модулей, детерминирующих те или иные циклы. [c.190]

    Многоклеточные организмы наряду с рассмотренными внутриклеточными механизмами имеют надклеточные-гормональные механизмы регуляции О.в. Гормональная регуляция координирует О.в. в разл. тканях и органах и интегрирует его в рамках организма в целостную систему. Гормональная регуляция О.в. у растений осуществляется группой фитогормонов, напр, ауксинами и гиббереллинами. Гормональную регуляцию О.в. у животных осуществляет эндокринная система, источниками гормонов в к-рой являются центр, и переферич. железы внутр. секреции. Характер управляющих связей в этой системе иллюстрирует механизм поддержания концентрации глюкозы в крови на постоянном уровне. Так, повышение концентрации глюкозы в крови увеличивает продукцию инсулина, к-рый стимулирует клетки на усиленное потребление глюкозы. Возникающий при этом дефицит глюкозы приводит к увеличению продукции др. пептидного гормона-глюкагона, к-рый стимулирует восстановление концентрации глюкозы благодаря расщеплению гликогена в клетках. [c.317]


    Ярким примером такого рода регуляторных переключений являются события, происходящие в ответ на тепловой шок. Процессы клеточной дифференцировки также сопровождаются включением в Т. новых мРНК, иногда накопленных в цитоплазме заранее, а также изменением скоростей Т. и выключением нек-рых мРНК из Т. Регуляция синтеза белков на Зфовне Т. играет важную роль у всех организмов, включая бактерии, в координации продукции разл. белков в клетке и поддержании их правильных стехиометрич. соотношений (это особенно касается поддержания стехиометрии синтеза субъединиц сложных белков). [c.622]

    Независимо Э. Волкин и Ф. Астрачан (1956) изучали синтез РНК в бактериях, зараженных ДНК-содержащим бактериофагом Т2. После заражения бактерии перестают синтезировать свои белки, и весь белковый синтез клетки переключается на продукцию белков фага. Оказалось, что основная часть РНК клетки-хозяина при этом/не изменяется, но в клетке начинается продукция небольшой фр ции метаболически нестабильной (короткоживущей) РНК, нуклеотидный состав которой подобен составу ДНК фага. [c.10]

    Обычно считается, что главным способом регуляции синтеза белка у прокариот является регуляция на уровне транскрипции. Действительно, метаболическая нестабильность (быстрый синтез и быстрый распад) мРНК в клетках прокариот обеспечивает практически немедленную смену матриц в зависимости от меняющихся условий среды и потребностей клетки. В то же время, однако, существование полицистронных матриц у прокариот часто требует дифференциального управления активностью отдельных цистронов для осуществления количественно разной и/или разновременной продукции белков, кодируемых одним полинуклеотидом. Кроме того, в ряде случаев накопление неиспользуемых количеств продукта трансляции выгодно использовать для немедленного выключения именно трансляции соответствующей мРНК и тем самым осуществлять очень тонкую подгонку размера продукции и ее потребления в клетке. Во всех известных случаях точкой приложения регуляции на уровне трансляции у прокариот является стадия инициации. [c.233]

    Живые клетки имеют системы защиты от повыщенной продукции свободных радикалов. Фермент супероксиддисмутаза превращает супер-оксид-анион кислорода в менее реакционноспособный и более гидрофобный пероксид водорода Н,0,. Пероксид водорода является субстратом каталазы и глутатионзависимых пероксидаз, которые катализируют его превра- [c.314]

    Гипогликемия. Нередко гипогликемия связана с понижением функций тех эндокринных желез, повышение функций которых приводит, как отмечалось, к гипергликемии. В частности, гипогликемию можно наблюдать при гипофизарной кахексии, аддисоновой болезни, гипотиреозе. Резкое снижение уровня глюкозы в крови отмечается при аденомах поджелудочной железы вследствие повышенной продукции инсулина 3-клетками панкреатических островков. Кроме того, гипогликемия может быть вызвана голоданием, продолжительной физической работой, приемом 3-ганглиоблока-торов. Низкий уровень глюкозы в крови иногда отмечается при беременности, лактации. [c.360]

    В последующих главах мы детально опишем различные высокоспециализированные биологические системы. В частности, в гл. 7 будет рассмотрена система вирус насекомых-клетки насекомьгх , которая используется для продукции аутентичных белков, кодируемьЕХ клонированными генами, а в гл. 19 -генетическая модификация домашних животных (коров, овец, свиней). В настоящей главе мы дадим краткое описание наиболее значимых для молекулярной биотехнологии систем, которые также будут рассматриваться в последующих главах. [c.24]

    Живая рекомбинантная вирусная вакцина имеет ряд преимуществ перед неживыми вирусными и субъединичными вакцинами 1) презентация аутентичного антигена практически не отличается от таковой при обычной инфекции 2) вирус может реплицироваться в клетке-хозя-ине и увеличивать количество антигена, который активирует продукцию антител В-клетками (гуморальный иммунитет) и стимулирует выработку Т-клеток (клеточный иммунитет) 3) встраивание генов антигенных белков в один и большее число сайтов генома ВКО еще больше уменьшает его вирулентность. [c.241]

    Для направленного изменения прокариот, синтезирующих определенные метаболиты, в принципе есть два пути. Во-первых, можно изменить активность или содержание одного или нескольких ферментов того или иного биосинтетического пути с тем, чтобы увеличить продукцию нужного метаболита. Во-вторых, в прокариотический геном можно ввести чужеродные гены, кодирующие ферменты, которые, используя эндогенный метаболит в качестве субстрата, обеспечат синтез метаболита, изнaчaJ Iьнo не продуцируемого хозяйской клеткой. Такого рода манипуляции представляются достаточно простыми, однако далеко не всегда [c.265]

    К сожалению, некоторые свойства этого штамма (чувствительность к высокой концентрации этанола, неэффективность экспрессии кДНК глюкоамилазы, поддержание плазмид только при определенном давлении отбора) делают его непригодным для промышленного использования. Однако эти недостатки удалось устранить. Во-первых, продукцию глюкоамилазы повысили примерно в 5 раз, удалив из плазмиды область отрицательной регуляции WO7-про-мотора длиной 175 п. н. Во-вторых, из плазмиды удалили дрожжевой сайт инициации репликации и встроили в нее сегмент ДНК, гомологичный участку дрожжевой хромосомы, превратив ее тем самым в интегрирующий вектор, который встраивается в дрожжевую хромосому и стабильно поддерживается в клетке. В-третьих, в качестве клетки-хозяина для модифицированной таким образом плазмиды использовали другой штамм [c.290]

    Все известные живые организмы состоят из клеток и продуктов их метаболизма. Это в 1838 г впервые доказали М. Шлейден и Т. Шванн, которые постулировали, что растительные и животные организмы построены из клеток, рас-положенньгх в определенном порядке. Спустя 20 лет Р. Вирхов буквально в нескольких словах сформулировал основы клеточной теории, указав, что все живые клетки возникают из предшествующих живых клеток. В дальнейшем клеточная теория развивалась и дополнялась по мере совершенствования методов познания. Каждая клетка является обособленной функциональной единицей, имеющей ряд специфических особенностей, в зависимости от ее природы. Микроорганизмы представлены отдельными клетками или их колониями, а многоклеточные организмы, например животные или высшие растения, состоят из миллиардов клеток, соединенных друг с другом. Клетка представляет собой своеобразную фабрику, на которой осуществляются многообразные и согласованные химические процессы. Как и на реальной фабрике, в клетке имеется центр управления, участки контроля за теми или иными реакциями, регуляторные механизмы. В клетку также поступает сырье, которое перерабатывается в готовую продукцию, и отходы, которые выбрасываются из клетки. [c.11]

    Известно, что в патогенезе хронической свинцовой интоксикации существенную роль играет поражение эритроцитар-ного ростка кроветворения, печени и толстого кишечника. Лимфоидная ткань, плазматические клетки, т. е. ткани, в первую очередь обусловливающие продукцию иммунных антител, первично не страдают при действии свинца. Как и следовало ожидать, в опытах К- К- Макашева (1956) изменение иммунитета наступало позже появления характерных изменений крови в случае отравления сравнительно малыми дозами (по 1 мл 0,5—1 % раствора ацетата свинца pro dosi до 0,35— 2,1 г суммарно), а в случае более тяжелого отравления (по 1 мл 2,5—5% раствора ацетата свинца pro dosi до 1,75—10,5 г [c.282]

    Вместе с тем показано, что умеренные фаги могут придать несущей их бактериальной клетке новые признаки, связанные, например, с продукцией токсина ранее нетоксигенными штаммами дифтерийных бактерий, с изменением соматических антигенов (например, у сальмонелл), с изменением чувствительности к антибиотикам (например, у стафилококков) и пр. Этот процесс получил название лизогенной, или фаговой конверсии. При этом может быть не только внутри-, но и межвидовая конверсия. [c.85]

    Контроль и управление биотехнологическими процессами, реализуемыми в периодическом или непрерывном режимах (даже при использовании одних и тех же биообъектов), будут не одинаковыми Например, одноклеточные культуры в глубинных условиях в периодическом режиме проходят все фазы своего развития (скрытую — lag, экспоненциальную — log, стационарную — onst, отмирания— let) Поэтому продукция какого-либо вторичного метаболита будет далеко неравнозначной в ту или иную фазу развития продуцента В непрерывном режиме клетки находятся, как правило, в одной определенной фазе [c.279]

    Биотехнология таких вакцин базируется на возможности переноса фрагментов хромосомной ДНК или плазмид из бактерий или вирусов в клетки других видов бактерий или дрожжей, то есть не в природные для них реципиентные клетки. Таким путем создана возможность продукции поверхностного антигена вируса гепатита В (НВвАд) дрожжевыми клетками. Этот антиген отделяют от дрожжей-продуцентов и используют для приготовления вакцины. [c.486]

    Следует отметить, что в культуру давно введены клетки крови, соединительной ткани и другие (см., например, раздел 11.4). Соединительнотканные клетки — фибробласты (от лат. fibra — нить, волокно от греч. blastos — почка, росток, отпрыск) характеризуются выраженной адгезивностью благодаря обильной продукции ими фибронектина (см. рис. 152), поэтому их монослойные куль-турь всегда удаются с определенным успехом. [c.555]

    При пирогенном действии эндотоксины стимулируют продукцию и выход эндогенного пирогена из различного типа клеток, включая кровяные и эксудативные гранулоциты, альвеомерные макрофаги, селезеночные моноциты, печеночные клетки Купффера, большинство компонентов ретикуло-эндотелиальной системы. [c.377]


Смотреть страницы где упоминается термин клеток продукция: [c.175]    [c.343]    [c.278]    [c.413]    [c.195]    [c.229]    [c.260]    [c.398]    [c.236]    [c.573]    [c.61]    [c.195]    [c.229]    [c.260]    [c.398]    [c.557]    [c.209]    [c.144]    [c.510]    [c.542]    [c.554]    [c.126]   
Иммунология (0) -- [ c.142 , c.143 , c.231 , c.232 , c.233 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Продукция



© 2025 chem21.info Реклама на сайте