Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок одноклеточный в микроорганизмах

    В связи с изложенным ученые многих стран проводят работы по изысканию новых источников белка, которые позволили бы получить за короткий срок дешевый, биологически ценный продукт, не отличающийся по своим свойствам от белков животного происхождения и пригодный для использования в рационе питания человека и животных. Благодаря интенсивным разработкам и поискам ученых появилась возможность вырабатывать белки из нефтяного и газового сырья с помощью одноклеточных микроорганизмов - дрожжей, бактерий и водорослей. [c.262]


    Характеристика продукции, сырья и полуфабрикатов. Дрожжи — одноклеточные микроорганизмы, относящиеся к классу грибов сахаромицетов. Дрожжевая клетка содержит в среднем 67 % воды и 33 % сухого вещества. Сухое вещество дрожжевой клетки содержит 37...50 % белков, 35...40 % углеводов, 1,2...2,5 % сырого жира и 6... 10 % зольных веществ. [c.84]

    Эрлифтные биореакторы, вообще говоря, более эффективны, чем барботажные колонны, особенно в случае суспензий микроорганизмов с большой плотностью или вязкостью. Перемешивание в них более эффективно и проблема слипания пузырьков не столь велика. В особенно больших эрлифтных ферментерах, таких как ферментер на 1 500 ООО л фирмы I I (Англия), сконструированный для получения белков одноклеточных микроорганизмов, ддя прохождения клетками полного цикла в реакторе требуется весьма значительное время. Чтобы обеспечить их субстратами на все время их перемещения с током жидкости, субстраты вводились но всей длине реактора сразу во многих точках. [c.359]

    Белок одноклеточных организмов (БОО) — термин, принятый для обозначения белковых продуктов, синтезируемых монокультурой микробных клеток и использующихся в качестве пищевых добавок или корма для скота. Вопрос об использовании микробной биомассы в качестве источника белка рассматривается вполне серьезно. Это связано не только с дефицитом продовольствия в общемировом масштабе, но и с тем, что содержание белка в большинстве микроорганизмов весьма велико на его долю приходится примерно 60—80% сухой массы клетки. Кроме того, благодаря высокому содержанию метионина, лизина, витаминов и важных минералов БОО обладает более высокой пищевой ценностью, чем некоторые виды пищи растительного и животного происхождения. Но широкое применение БОО сдерживается по ряду причин. [c.301]

    Непрерывную ферментацию уже использовали для промышленного получения белков одноклеточных микроорганизмов, антибиотиков и органических растворителей. [c.354]

    Чтобы отличать такой тип продуктов от белков высших многоклеточных животных и растений, для микробного белка придумано специальное название — белок одноклеточных организмов (БОО). Производство его связано с крупномасштабным выращиванием определенных микроорганизмов, которые собирают и перерабатывают в пищевые продукты. В основе лежит технология ферментации — ветвь бродильной промышленности и производства антибиотиков. Чтобы осуществить возможно более полное превращение субстрата в биомассу микробов, тре- [c.116]


    Белки одноклеточных и многоклеточных микроорганизмов [c.473]

    Синтетический протеин — белково-витаминный концентрат (БВК)—позволяет компенсировать недостаток белка, необходимый для питания человека и животных. БВК могут быть синтезированы из нефтяного и газового Сырья с использованием одноклеточных микроорганизмов — дрожжевых грибков, бактерий и водорослей. [c.219]

    Если представить себе работу живой клетки в целом, то можно сказать, что клетки организмов животных, растений и даже одноклеточные микроорганизмы представляют собой поразительные по своему совершенству химические заводы. В них вырабатываются, например, сложнейшие полимерные частицы с самыми разнообразными свойствами, различного состава, разной прочности, эластичности, различной термоустойчивости и окраски. В клетках очень постоянно, одновременно, или, если это нужно, то в необходимой последовательности, происходят тонкие синтезы таких сложных и разнохарактерных веществ, как нуклеиновые кислоты, белки и в том числе ферменты, сложные углеводы, жиры, витамины, гормоны и множество других сложных соединений. Эти заводы в клетках смонтированы очень компактно, все процессы в них точно и четко регулируются, режим оптимальный. В основе работы их лежит согласованное действие ферментных систем, осуществляющих цепи управляемых химических реакций. Естественно, что в будущем подобные принципы работы должны быть использованы и химической, и биохимической промышленностью. [c.337]

    Размножение микроорганизмов в оптимальных для роста условиях, т. е. при больших скоростях протока, возможно весьма долгое время — месяцами. Поэтому наращивание биомассы всегда целесообразно вести в проточных условиях. Это значительно удешевляет процесс, так как исключается время на опорожнение емкостей и процесс все время идет при максимально возможной скорости. Так работает многотоннажная промышленность производства белка (микробной биомассы белка одноклеточных). [c.137]

    О росте микроорганизмов в естественных субстратах или в питательных средах судят по количеству их клеток или биомассе в единице объема. Методы определения этих показателей могут быть прямыми (подсчет клеток под микроскопом, взвешивание на весах) или косвенными. Косвенные методы основаны на измерении параметров, величина которых зависит от количества или биомассы микроорганизмов (число колоний, выросших после высева суспензии клеток на питательную среду, рассеяние или поглощение суспензией клеток света, содержание в ней белка и др.). Выбор метода зависит от целей исследования, свойств питательной среды или субстрата, а также особенностей роста и морфологии микроорганизмов. Так, многие методы, используемые для определения числа одноклеточных микроорганизмов, не приемлемы при подсчете многоклеточных (нитчатых, мицелиальных и др.) форм. [c.117]

    Вопросы, связанные с промышленным производством всех продуктов, дающих биотехнологии источники углерода и энергии для роста микроорганизмов н биосинтеза, в этой главе подробно рассматриваться не будут. Здесь будут кратко изложены основы технологии наиболее важных веществ, в первую очередь субстратов для биосинтеза микробного белка. К ним относятсяУпара-финовые углеводороды нормального строения етанол, этанол, метан как компонент природного газа и углеводы различного происхождения, прежде всего гидролизаты растительного сырья. Белок одноклеточных можно получать с утилизацией некоторых отходов целлюлозно-бумажного производства, химической и нефтехимической промышленности, которые, однако, не применяются в других процессах микробиологического синтеза. [c.33]

    Создание новых методов переработки и хранения пищевых продуктов, получение пищевых добавок (например, полимеров, продуцируемых микроорганизмами аминокислот), использование белка, синтезируемого одноклеточными организмами, и ферментов при переработке пищевого сырья [c.14]

    Возможность удобрения бикарбонатами играет важную роль в спекулятивных предложениях по культивированию в широком масштабе одноклеточных водорослей в качестве источника горючего или питания для человека, животных или микроорганизмов (вроде дрожжей), производящих белки и жиры. [c.318]

    Если сравнить ферментативные процессы, протекающие у животных, высших растений и микроорганизмов, то можно заметить сходство, даже единство, лежащее в основе жизнедеятельности самых разнообразных живых существ. Считают, что процессы, идущие в животной клетке (например, клетке мозга), растительной (например, меристемы) или железобактерии, весьма близки и их метаболизм отличается лишь в деталях. Конечно, правильно, что такие процессы, как синтез белка, перенос электронов, фосфорный обмен или цикл трикарбоновых кислот, как и множество других явлений, сходны у самых разнообразных многоклеточных и одноклеточных организмов. Однако наряду с этим необходимо всегда иметь в виду характерные, специфические особенности обмена веществ и, следовательно, ферментативных процессов у микроорганизмов, которые способны и отличными способами реагировать на физические и химические воздействия, и осуществлять сложные каталитические реакции таких типов, которые никогда не выполняются животными и высшими растениями. [c.113]


    В пищевой промышленности это создание новых методов переработки и хранения пищевых продуктов, получение пищевых добавок (например, полимеров, продуцируемых микроорганизмами, аминокислот), использование белка, синтезируемого одноклеточными организмами, и ферментов при переработке пищевого сырья. Применение ферментов для усовершенствования средств диагностики, создание тестовых систем на основе ферментов, использование микроорганизмов и ферментов при производстве сложных лекарств (например, стероидных), синтез новых антибиотиков и их использование в терапии инфекционной патологии животных. [c.252]

    Большинство микроорганизмов почти весь период своей жизнедеятельности проводят как одноклеточные организмы. Их хрупкая цитоплазматическая мембрана окружена наружной клеточной стенкой, защищающей клетку от внешней среды (рис. 25). Между мембраной и клеточной стенкой находится периплазм а-тическое пространство, содержащее растворимые белки и другие компоненты. [c.59]

    Чистая целлюлоза может быть довольно легко разрушена путем химического или ферментативного гидролиза до растворимых сахаров, которые затем легко подвергаются ферментации (сбраживанию) микроорганизмами с образованием этанола, бутанола, ацетона, одноклеточного белка (8СР), метана и многих других продуктов. В этом плане разительные успехи достигнуты в США, Швеции, Британии и дело только во времени, чтобы преодолеть вышеперечисленные трудности. [c.50]

    Наряду с жирами и углеводами белки — основная составная часть пищи человека. В индустриальных странах главным источником пищевых белков являются продукты животного пронсхождення, в то время как в развивающихся странах в пище преобладают биологически неполноценные растительные белки. Для удовлетворения потребности постоянно растущего населения помимо увеличения производства животных и растительных продуктов, выведения сортов зерновых с повышенным содержанием недостающих аминокислот и повышения ценности биологически неполноценных растительных белков добавлением синтетических аминокислот все большее значение приобретает дальнейшее развитие микробиологических щюцессов получения белков одноклеточных микроорганизмов [10 — 15]. Микробиологические процессы основаны на способности определенных микроорганизмов использовать в обмене веществ в качестве источника углерода такие вешества, как углеводороды нефти, спирты или сырье, содержащее углеводы (крахмал, меласса, целлюлоза). Обзор важнейших процессов дан в табл. 3-1. [c.341]

    Ферментеры, или биореакторы, представляют собой камеры, в которых в жидкой или на твердой среде выращивают микроорганизмы. Процесс, происходящий в ферментере, называется ферментацией. Термин ферментация первоначально применялся только к анаэробным процессам, однако сейчас он используется более щироко и включает все процессы, как аэробные, так и анаэробные. На рис. 12.16 изображен типичный ферментер. Это довольно сложное техническое сооружение, поэтому необходимо потратить некоторое время для изучения его устройства. Не забывайте также о проблемах, возникающих при расщирении масштабов производства, которые бьши перечислены в предыдущем разделе. Содержимое ферментеров во время работы, как правило, тем или иным способом перемещивается. Например, при производстве белка одноклеточных прутина компанией I I перемещивание достигается с помощью воздуха, подаваемого с высокой скоростью со дна сосуда. Продуктом являются либо сами клетки (биомасса), либо какой-то полезный клеточный метаболит. Все операции должны проводиться в стерильных условиях, чтобы избежать загрязнения культуры. Кроме того, необходимо обеспечить возможность поддержания в стерильном состоянии всех вводных и выводных отверстий ферментера. Ферментер и среду стерилизуют перед использованием вместе или раздельно. Исходные культуры организма, который должен использоваться в процессе ферментации, хранят в неактивной форме (например, в замороженном состоянии). Пробу активируют, наращивают в достаточном объеме с использованием асептических методов (наращивание) и затем добавляют в ферментер (инокуляция). В ферментере организм растет и размножается, используя питательную среду. [c.66]

    Технология получения кормового или пищевого белка одноклеточных и многоклеточных микроорганизмов сравнительно несложная и заключается в наращивании по возможности наибольшего количества биомассы клеток, в ее денуклеинизации, сепарировании и приготовлении целевого продукта. Культивирование того или иного микроорганизма проводят в оптимальных условиях (до получения десятков-сотен граммов дрожжей в 1 л) в периодическом или непрерывном режиме, в стерильных или нестерильных условиях. [c.203]

    Как получение химических соединений и пищевых добавок путем брожения, так и синтез антибиотиков всегда велись в асептических условиях, но некоторые современные процессы (например, образование белка одноклеточными организмами) осуществляют в еще более жестком режиме. Обеспечение таких особых условий —многоплановая задача. Она решается инже-нерами-химиками и микробиологами (подробнее об этом будет рассказано в гл. 10). С другой стороны, использование микроорганизмов при переработке отходов (гл. 6) не требует создания стерильных условий напротив, вообще говоря, чем больше разных микроорганизмов принимает в этом участие, тем лучше. Впрочем, при планировании и создании заводов по переработке отходов инженеры-химики и микробиологи столкнулись с проблемами иного круга. Процесс минерализации органических отбросов, основанный на использовании активного ила, был разработан в 1914 г. С тех пор он был существенно модернизирован, стал более сложным и производительным и используется сегодня во всем мире для переработки стоков. [c.13]

    СЯ ЯСНО, что при переработке всех этих отходов мы можем получить многие тонны активного ила. В процессе переработки отходов при участии микроорганизмов образуется много микробного белка, который можно повторно использовать как корм для скота, поскольку 30—407о сухой массы выросших клеток — это неочищенный белок. На рис. 6.16 описан метод экстракции белка из активного ила, а в табл. 6.3 приведен сО став белка одноклеточных организмов (БОО) из того же источника. Тяжелые металлы, обнаруженные в отстое сточных вод (например, медь из отходов свиноводства, где ее присут ствие обусловлено применением концентратов меди для корм-  [c.272]

    Очень перспективный способ получения смесей пищевых аминокислот— выращивание одноклеточных микроорганизмов (обычно дрожжей рода andida или Torula) на углеводородном или углеродном сырье, гидролиз получающихся при этом белков до аминокислот и их выделение в чистом виде. [c.517]

    В условиях интенсивно развивающегося животноводства крайне важна задача создания сбалансированных кормов. Одним из альтернативных путей ее достижения является биотехнологическое производство клеточных белков, полноценных по набору незаменимых аминокислот. Производство кормового белка [синонимы БВК, кормовые дрожжи, в зарубежной литературе — белок одноклеточных (8СР) ] основано на культивировании четырех категорий микроорганизмов бактерий, грибов, дрожжей и микроводорослей, используюших в качестве субстрата источников питания углеводы отходов сельскохозяйственной продукции, целлюлозно-бумажного производства, углеводороды нефти, простейшие спирты, газы (СО2, метан) и др. В настоящее время производство кормовых дрожжей только в СССР превысило 1 млн.т/год и характеризуется тенденцией неуклонного роста в прёдстоящее десятилетие. [c.119]

    Возмещение потерь почвенного азота происходит из нескольких источников. Это прежде всего органические остатки отмирающей биомассы, образующие самый мощный поток азота, вносимый в почву. Второе место по значению занимает процесс фиксации молекулярного азота атмосферы (азотфиксации) клубеньковыми бактериями, живущими в симбиозе с бобовыми и другими растениями. Кроме клубеньковых бактерий азотфик-сация осуществляется свободно живущими в почве микроорганизмами рода азотобактер, клостридиями, одноклеточными грибами и водорослями. Все эти микроорганизмы восстанавливают азот при участии фермента нитрогеназы и железосодержащих белков ферредоксинов. [c.423]

    Определенные успехи достигнуты в получении белка с помош,ью микробного синтеза. Это направление получило название производства одоклеточного белка (8СР), поскольку большинство микроорганизмов, используемых для этих целей, растут в виде одноклеточных или мицелиальных (нитевидных) особей, а не как сложные многоклеточные организмы (растения или животные). [c.55]

    Для повышения продуктивностн животных путем дачи полноценного корма, микробиологическая промышленность в настоящее время выпускает кормовые белки на базе различных микроорганизмов-бактерий, грибов, дрожжей, водорослей. Богатая белковая биомасса одноклеточных усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет получить 0,4—0,6 т свинины, до 1,5 т мяса птиц, 25—30 тыс. яиц и сэкономить 5—7 т зерна. Это имеет большое народнохозяйственное значение, поскольку 30 % площадей сельскохозяйствен-н ых угодий в мире отводятся для производства корма скоту и птице. [c.252]

    В соответствие с этой концепцией были предложены многочисленные методы, способные обнаружить метаболическую активность микроорганизмов. По классификации Имшенецкого (1970), все предложенные методы могут быть разделены на прямые и косвенные. К последним относятся химические анализы грунта и атмосферы планеты, астрономические методы и др. Прямые методы основаны на передаче обзорных панорам в случае поиска макроформ и констатации роста и размножения одноклеточных организмов. Прямые методы могут быть разделены на наиболее надежные, заслуживающие внимания, и менее надежные. К наиболее надёжным Имшенецкий (1970) относит определение нарастания биомассы нефелометрия, УФ-фотометрия, количественное определение железонор-фириповых белков и АТФ, определение количества 14 СО-2, выделяющегося в процессе утилизации меченых питательных веществ, содержащихся в среде, измерение pH и Eh культуральных жидкостей. Заслуживают внимания такие методы, как определение оптической активности, количественное определение флавинов, белка, нуклеиновых кислот и аминокислот, обнаружение фосфатазной активности, а также манометрия. Менее надежными следует признать методы с применением 0, 0, калориметрию, определение митогенетического излучения. [c.108]

    Осн. работы — в области биохимии нуклеиновых к-т. До 1964 занимался синтезом физиологически активных гетероциклических соед. пиримидинового ряда. Разработал твердофазный метод хим. фракционирования транспортных РНК на полиакрилгидразидиых сорбентах. Создал комплекс методов ультра-микробиохимического анализа, позволяющий проводить исследование нуклеиновых к-т, белков и ферментов в масштабе отдельной клетки. Занимался изучением транспорта нуклеиновых к-т на модели гигантской одноклеточной водоросли — ацетобулярии — и показал, что транспорт к-т не коррелирует с полярным ростом клетки (1973—1974). Осуществил сборку жизнеспособной клетки из отдельных компонентов — цитоплазмы, ядра и клеточной стенки. С 1974 занимается синтезом хим. эквивалентов структурных генов белков и их встройкой в микроорганизмы с целью получения штаммов — продуцентов биологически активных соед. [c.394]


Смотреть страницы где упоминается термин Белок одноклеточный в микроорганизмах: [c.34]    [c.388]    [c.474]    [c.117]    [c.118]    [c.427]    [c.74]    [c.117]    [c.118]    [c.272]    [c.19]    [c.138]    [c.142]    [c.140]    [c.24]    [c.412]   
Химия окружающей среды (1982) -- [ c.41 ]




ПОИСК







© 2024 chem21.info Реклама на сайте