Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент-субстратные комплексы диссоциация

    Следовательно, построив зависимость aji от l/[So], можно определить константу диссоциации фермент-субстратного комплекса Ks- [c.86]

    С другой стороны, константа диссоциации фермент-субстратного комплекса Ks сохраняет постоянное значение при кислых и нейтральных значениях pH, но с дальнейшим увеличением pH она возрастает [13, 46]. Последнее объясняют тем, что правильная стереохимическая конформация активного центра обусловлена взаимодействием ионной пары (Asp-194)—СОО . .. " NHa — (11е-16), находящейся внутри ферментной глобулы (См. рис. 31). В результате депротонизации а-аминогруппы Пе-16 (с рКа — 8,5—9) происходит разрушение солевого мостика , что приводит к потере ферментом сорбционной способности. Это представление согласуется с данными рентгеновского анализа структуры кристаллического химотрипсина [17], однако ван<ность именно а-аминогруппы Пе-16 для катализа поставлена под сомнение в ряде работ ]47, 48]< [c.132]


    Символы Е, ЕН, ЕНг и т. д. описывают состояния ионизации групп фермента, которые участвуют в ферментативной реакции. Ионизация остальных групп белковой глобулы здесь вообще не рассматривается. Будем полагать, что константы диссоциации ионогенных групп в свободном ферменте (/Са, /Св) и в фермент-субстратном комплексе (/ a. К ъ) различны [в принципе схема (6.177) может описывать и реакцию фермента, активный центр которого содержит четыре ионогенные группы, две из которых функционируют в свободной форме фермента, и две — в фермент-субстратном комплексе]. [c.259]

    Для вывода уравнения стационарной скорости ферментативной реакции, в которой происходит обратимая изомеризация фермента с образованием неактивного конформера (схема 6.27), запишем уравнение материального баланса по ферменту (в случае [8]о [Е]о), а также выражения для скорости распада фермент-субстратного комплекса и для константы диссоциации фермент-субстратного комплекса  [c.138]

    Здесь необходимо указать, что символы Е, ЕН, ЕНг и т. д. описывают только состояние ионизации определенных групп фермента, контролирующих ферментативную реакцию. Ионизация остальных групп белковой глобулы здесь вообще не рассматривается. Согласно схеме (10.1) активный центр фермента имеет две ионогенные группы, причем константы их диссоциации в свободном ферменте и в фермент-субстратном комплексе являются различными (в принципе, схема (10.1) может описывать и реакцию фермента, активный центр которого содержит четыре ионогенные группы, две функционируют в свободной форме фермента и две — в фермент-субстратном комплексе). [c.219]

    Схема (84) описывает последовательное отщепление мономера с конца субстрата или посредством множественной атаки (с константой скорости кг), или путем повторных атак с повторяющейся диссоциацией фермент-субстратного комплекса на фермент и укороченный субстрат (с константой скорости кг). Как следует из схемы (84), исходный полимер имеет максимальную длину п- -  [c.111]

    Таким образом, видно, что константа Михаэлиса всегда будет больше константы диссоциации фермент-субстратного комплекса Л з. В случае если V будет равно Ч2У, то т=[5], иными словами, константа Михаэлиса будет равна той концентрации субстрата, при которой наблюдается скорость реакции, равная половине максимальной. [c.131]

    Рассмотрим определение константы диссоциации фермент-субстратного комплекса флуоресцентным методом. Взаимодействие фермента с субстратом описывается общей схемой  [c.178]


    Если фермент-субстратный комплекс флуоресцирует в другой спектральной области, нежели исходные компоненты, можно, измеряя флуоресценцию этого комплекса, определить константу его диссоциации. В условиях избытка субстрата по сравнению с ферментом ([Eo]<[So]) система описывается следующими уравнениями  [c.179]

    Следовательно, построив зависимость а/1 от 1/[5о], можно определить константу диссоциации фермент-субстратного комплекса Кв- [c.179]

    Принимая, что фермент-субстратный комплекс способен К диссоциации, можем написать [c.188]

    Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент—субстратного комплекса, и обозначать символом К . Так, в реакции [c.135]

    Отсюда вытекает важное следствие константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса К на величину [c.137]

    Образовавшийся комплекс, называемый фермент-ингибиторным комплексом Е1, в отличие от фермент-субстратного комплекса Е8 не распадается с образованием продуктов реакции. Константу диссоциации комплекса Е1, или ингибиторную константу К, можно, следуя теории Михаэлиса—Ментен, определить как отношение констант обратной и прямой реакций  [c.149]

    Наряду с образованием фермент-субстратного комплекса возможна его диссоциация со скоростью к на фермент и исходный субстрат, а также распад с образованием продуктов реакции, протекающий со скоростью к . Этот процесс описывается уравнением [c.73]

    Уравнение (У.4) является основным уравнением стационарной кинетики простейших ферментативных реакций. Оно носит название уравнения Михаэлиса — Ментен — авторов, которые, развивая представления Брауна и Анри в области ферментативной кинетики, экспериментально показали приложимость этого уравнения ко многим ферментативным процессам. Следует, однако, сказать, что Михаэлис и Ментен придавали иной смысл величине Кт- Они считали, что концентрация комплекса Е5 определяется лишь соотношением констант -1/ +1, т. е., что на [Е8] существенно не влияет константа +2. Легко показать, что в этом случае получается уравнение такого же вида (У.4), однако в нем член Кт равен к- к+1, т. е. является константой диссоциации фермент-субстратного комплекса. Влияние А+2 на величину [Е5] было учтено Бриггсом и Холденом, однако уравнение ( .4) сохранило название первых авторов. Точно так же константа Кт, представляющая соотношение трех констант скорости, носит название константы Михаэлиса, хотя и имеет иной, более точный смысл. [c.39]

    В то же время истинная константа диссоциации фермент-субстратного комплекса, которая в энзимологии носит название константы субстрата и обозначается К , является функцией двух констант скорости  [c.46]

    Однако были сделаны попытки применения методов стационарной кинетики для вычисления константы субстрата (константы диссоциации фермент-субстратного комплекса). Один из принципов подхода к расчету Ks по данным стационарной кинетики, принадлежащий Слейтеру [16], основан на следующих соображениях. [c.50]

    НО отмечалось, что максимальная скорость многих ферментативных реакций, наблюдающаяся при насыщающей концентрации субстрата, а не только кажущаяся величина Кт, зависит от pH. Это заставило предположить, что концентрация ионов водорода определяет не только ионизацию свободного фермента, но также кислотно-основную диссоциацию фермент-субстратного комплекса, причем этот последний процесс влияет на концентрацию активного комплекса Михаэлиса и образование продуктов реакции. [c.109]

    Таким образом, максимальная скорость ферментативной реакции при избытке субстрата в случае диссоциации фермент-субстратного комплекса изменяется в зависимости от pH, и это изменение определяется соответствующими константами диссоциации Ка и Кь-В точке максимума зависимости V от [Н ] [c.110]

    Константы диссоциации функциональных групп свободных ферментов и фермент-субстратных комплексов [5] [c.111]

    Для проведения измерения готовят раствор субстрата и фермента (в качестве субстрата используют 1-диметиламиноиафта-линсульфонил-пептид в качестве фермента — пепсин) в 0,1 М формиатном буферном растворе (pH 3,1). Концентрации субстрата (моль/л) 0,02-10-3 0,06-10- 0,Ы0- 0,15-10- 0 2-10-з. Концентрация фермента постоянна 7,14-10 моль/л. Измеряют флуоресценцию образовавшегося фермент-субстратного комплекса (А-воаб = 285 нм, >ифл = 500 нм) в каждом из растворов и строят график зависимости aji от l/[So]. По тангенсу угла наклона определяют константу диссоциации комплекса /(,. [c.86]

    Анализ зависимости от pH позволяет найти значения констант диссоциации ионогенных групп фермент-субстратного комплекса К и К в), в то время как анализ рН-зависимости эффективной константы скорости второго порядка ат//Ст каж) приводит К значениям констзнт диссоциации ионогенных групп свободного фермента Ка. и КвУ- [c.260]


    Из выражений (10.5) — (10.6) видно, что анализ зависимости кат от pH позволяет найти значения констант диссоциации групп фермент-субстратного комплекса К а и К ъ), а анализ рН-зависимо-сти константы скорости второго порядка ккат1Кщтт) приводит к значениям констант диссоциации ионогенных групп свободного фермента Ка и Кь- [c.220]

    Из уравнения (10.13) видно, что рН-зависимость скорости ферментативной реакции, протекающей по трехстадийной схеме, в общем случае будет различной в зависимости от соотношения констант скоростей стадий ацилирования и деацилирования (йа/ з). С другой стороны, рН-зависимость константы скорости второго порядка кат/-/(т(каж), кнк И ДЛЯ двухстадийной схемы (10.1), определяется только константами диссоциации ионогенных групп активного центра свободного фермента Ка и Кь), контролирующих дальнейшее превращение фермент-субстратного комплекса. [c.223]

    Простые ферментативные реакции. Превращение субстрата 5 под действием фермента Е протекает через предварительное образование фермент-субстратного комплекса Е5. В ферментативном атализе приняты следующие обозначения V — скорость ферментативной реакции V — значение V в условиях насыщения фермента субстратом Кконстанта Михаэлиса, равная концентрации субстрата. при которой V Ks — субстратная константа, константа равновесия (диссоциации) реакции Е + 5 = Е5 —константы скорости прямой и обратной реакции п-й стадии ферментативной реакции [Е], [5], [Р], [I], [А]—концентрация фермента субстрата, продукта, ингибитора и активатора, соответственно. Простейшая схема ферментативной реакакции [c.189]

    Макроскопическая константа Михаэлиса (точнее соответствующая ей константа ассоциации) для гидролиза л-мера, Кт,п, равна сумме микроскопических констант ассоциации субстрата с активным центром фермента (строго это выполняется в том случае, когда химическое превращение фермент-субстратного комплекса происходит намного медленнее, чем его диссоциация на исходные фермент и субстрат, 2,л,п<Сй 1,г,я, см. схему 80)  [c.108]

    Интересная работа [110] также свидетельствует в пользу участия карбанионов типа (134) в тиаминдифосфат-зависимых ферментативных реакциях. Авторы показали, что тиазолон (138), который можно рассматривать в качестве аналога переходного состояния карбаниона (134) [111], очень прочно связывается с пируват-оксидазным ферментным комплексом. При этом константа диссоциации фермент-ингибиторного комплекса по крайней мере в 10 раз меньше соответствующей константы фермент-субстратного комплекса в тех же условиях. Это наблюдение свидетельствует в пользу того, что енаминная форма карбаниона (134) действительно участвует в ферментативной реакции. [c.634]

    Для измерения константы диссоциации неактивного фермент-субстратного комплекса уравнение (VII 1.10) удобно преобразовать методом Лайнуивера и Бэрка, взяв обратные величины  [c.95]


Смотреть страницы где упоминается термин Фермент-субстратные комплексы диссоциация: [c.38]    [c.38]    [c.59]    [c.128]    [c.144]    [c.216]    [c.245]    [c.77]    [c.163]    [c.130]    [c.86]    [c.180]    [c.161]    [c.188]    [c.132]    [c.136]    [c.68]    [c.104]   
Структура и механизм действия ферментов (1980) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация фермента

Комплексы диссоциация

Определение констант диссоциации фермент-субстратных комплексов

Фермент-субстратный комплекс константа диссоциации

также диссоциации фермент-субстратного комплекса



© 2025 chem21.info Реклама на сайте