Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика простых ферментативных реакций

    Кинетика простых ферментативных реакций [c.177]

    КИНЕТИКА ПРОСТЫХ ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ 363 [c.363]

    Уравнение (У.4) является основным уравнением стационарной кинетики простейших ферментативных реакций. Оно носит название уравнения Михаэлиса — Ментен — авторов, которые, развивая представления Брауна и Анри в области ферментативной кинетики, экспериментально показали приложимость этого уравнения ко многим ферментативным процессам. Следует, однако, сказать, что Михаэлис и Ментен придавали иной смысл величине Кт- Они считали, что концентрация комплекса Е5 определяется лишь соотношением констант -1/ +1, т. е., что на [Е8] существенно не влияет константа +2. Легко показать, что в этом случае получается уравнение такого же вида (У.4), однако в нем член Кт равен к- к+1, т. е. является константой диссоциации фермент-субстратного комплекса. Влияние А+2 на величину [Е5] было учтено Бриггсом и Холденом, однако уравнение ( .4) сохранило название первых авторов. Точно так же константа Кт, представляющая соотношение трех констант скорости, носит название константы Михаэлиса, хотя и имеет иной, более точный смысл. [c.39]


    Уравнение (4.251) является основным уравнением стационарной кинетики простейших ферментативных реакций и носит название уравнения Михаэлиса—Ментен—авторов, которые экспериментально показали справедливость этого уравнения по отношению ко многим ферментативным процессам. [c.375]

    Уравнениями бистабильной среды описывается распространение волн горения [3], кинетика некоторых ферментативных реакций [4] и ряд других процессов [5]. Самая простая (но мало реалистическая) схема химической реакции, способной к бистабильному поведению, предложена Шлеглем [6] и имеет вид (см. также гл. 2) [c.144]

    В целом математическая модель Моно, вызвавшая появление большого числа экспериментальных исследований зависимости скорости роста популяции от концентрации субстрата в питательной среде, а также теоретических представлений в этой области, показала, с одной стороны, важность учета субстрата при анализе роста популяции, а с другой — невозможность сведения закономерностей процесса только к влиянию одного субстрата, да и еще учитываемого в простой схеме ферментативной реакции. Поиски аналогий между кинетикой сравнительно простых ферментативных реакций, проходящих в бесструктурных системах, и зависимостью протекания внутриклеточных биосинтетических процессов от концентрации внеклеточного субстрата хотя и заманчивы, но требуют осторожности. [c.80]

    Как было уже показано, кинетика даже простейших ферментативных реакций описывается уравнением Михаэлиса, включающим, по меньшей мере, три константы скорости, характеризующие три взаимосвязанных процесса, где [c.232]

    Исследования кинетики ферментативных реакций в стационарном режиме — один из наиболее распространенных способов изучения механизма действия ферментов. Это определяется рядом особенностей ферментативных реакций и прежде всего тем, что для ферментативных реакций стационарное состояние устанавливается весьма быстро. Для простейшей схемы ферментативного процесса с участием одного промежуточного соединения (схема Михаэлиса — Ментен)  [c.171]

    Другой важный фактор, способствующий развитию стационарной кинетики ферментативных реакций, — простота экспериментальных методов исследования этих реакций в стационарном режиме. Существенную роль играет также и то, что формально-кинетический анализ уравнений стационарной кинетики, основанный на решении систем линейных алгебраических уравнений, достаточно прост и хорошо разработан (см. [2—4]), а также гл. VI). [c.174]


    В зависимости от численных значений множителей а и (3 эффектор Э может выступать в роли либо ингибитора (I), либо активатора (А, промотора) ферментативной реакции. Полный кинетический анализ и сводная таблица возможных частных случаев ингибирования и активации фермента в рамках схемы (6.14) даны в работе [6]. Некоторые частные случаи имеют особое значение и широко применяются для описания кинетики ферментативных процессов. К их числу относится полное конкурентное ингибирование, полное неконкурентное ингибирование, бесконкурентное ингибирование, простая активация и некоторые типы смешанного ингибирования и активации. [c.219]

    Практический курс, предлагаемый вниманию читателя, может рассматриваться как руководство по обработке экспериментальных данных ферментативной кинетики. В основу данной книги положены лекции и практические занятия по кинетике ферментативных реакций. Так как понимание кинетических закономерностей и механизма действия ферментов невозможно без знания кинетических законов простых химических реакций, последним в книге также уделено существенное внимание. [c.3]

    Простейшей схемой для описания кинетики ферментативных реакций является так называемая двухстадийная схема [c.77]

    Математические модели кинетики роста микроорганизмов, образования продуктов биосинтеза и утилизации субстратов отличаются от известных моделей химической кинетики. В основу большинства используемых моделей роста микроорганизмов положены уравнения ферментативной кинетики микробиологических процессов [1—4, 23, 27]. Однако, учитывая значительное число протекающих в клетках стадий биохимических ферментативных реакций, применение законов ферментативной кинетики носит в большинстве случаев формальный характер. Отличительной особенностью большинства моделей является использование в качестве основного параметра модели численности или концентрации микробной популяции. Именно большая численность микробных популяций позволяет широко применять при моделировании кинетики роста детерминистический подход, опирающийся на хорошо развитый аппарат дифференциальных уравнений. В то же время известны работы, в которых используются стохастические модели кинетики [25]. Среди них распространены работы, основанные на простой концепции рождения и гибели , что в математическом аспекте позволяет применять аппарат марковских процессов. В более сложных моделях микробная популяция представляется Б виде конечного числа классов, каждый из которых ха- [c.53]

    Стационарная скорость ферментативной реакции при наличии среди всех стадий одной, существенно более медленной, чем все остальные, определяется именно этой, наиболее медленной стадией. При соизмеримых скоростях отдельных стадий стационарная скорость всей реакции определяется соотношением констант скорости всех ступеней реакций. При этом, чем сложнее механизм реакции, тем это соотношение оказывается сложнее. Ввиду того, что одна из самых важных задач ферментативной кинетики — изучение механизма отдельных стадий реакции, перед исследователями возникает необходимость вычисления кинетических констант этих стадий. Эта проблема, к сожалению, пока может быть решена достаточно точно лишь для относительно простых по механизму реакций. В случаях сложных процессов стационарная кинетика может дать лишь приближенные решения. Однако и эти приближенные решения позво- [c.36]

    Рассмотрим первоначально стационарную кинетику наиболее простой по механизму ферментативной реакции с участием одного субстрата и образованием одного продукта, предположив, что реакция проходит в две стадии — образование и распад фер-мент-субстратного комплекса. На примере этой простой реакции легко показать принцип подхода к кинетическому анализу и более сложных по механизму ферментативных реакций. [c.38]

    Рассмотрим сначала стационарную кинетику ингибирования субстратом простейшей по механизму ферментативной реакции. Пусть имеется стационарная система, в которой, помимо одного активного комплекса Е8, образуется один неактивный комплекс состава ЕЗг  [c.93]

    Я начну с релаксационной концепции ферментативного катализа. Первое указание на отклонение каталитического акта ферментативной реакции от классической термодинамики и классической кинетики было, по-видимому, высказано в 1971 году [34]. Было показано, что применение основных постулатов Аррениуса и Эйринга к большинству ферментативных процессов может привести к бессмысленным значениям активационных параметров. Функционирование фермента больше похоже на работу механической конструкции, чем на обычную каталитическую химическую реакцию. Феноменологическая самосогласованная релаксационная теория ферментативного катализа была предложена в 1972 году [35,36]. Принципиальная идея релаксационной концепции заключается не просто в том, что конформационная [c.67]


    Как мы видим, обратимое взаимодействие с субстратом приводит к тому же самому результату (фиг. 9), что и классическое конкурентное ингибирование это вполне естественно, поскольку можно считать, что О конкурирует с ферментом за субстрат. Значение этогО вывода для практики зависит от того, как исследуется кинетика ферментативной реакции. Если- начальная концентрация субстрата Ло принимается просто равной концентрации, введенной в реакционную смесь, а скорость реакции оценивается по скорости образования продукта X, отличить кинетически О от истинного конкурентного ингибитора невозможно. Обнаружить отсутствие взаимодействия О с самим ферментом можно только в том случае, бели Ло действительно измеряется в реакционной смеси с помощью метода, позволяющего отличать свободный А от [c.72]

    Механизмы ферментативных реакций чрезвычайно сложны и еще мало изучены. Однако кинетика этих реакций часто описывается простыми уравнениями, получаемыми также из очень простых предположений. Так, кинетика инверсии тростникового сахара (сахароза) под действием фермента сахаразы описывается в предположении образования единственного промежуточного продукта, обладающего свойствами продукта Аррениуса. Последующие соображения и вывод были предложены Анри (1902), а также Михаэлисом и Ментеном (1913). Обозначив буквами F фермент, а S — реагирующее вещество (субстрат), кинетическую схему можно записать так  [c.351]

    Такое простое истолкование зависимости удельной скорости роста популяции от концентрации субстрата с позиций кинетики ферментативных реакций весьма привлекательно. Интерпретируя кинетику роста популяции как проявление закономерностей узкого места цепи ферментативных реакций, многие авторы, отдавая себе отчет в том, что уравнение Михаэлиса — Ментен описывает лишь самый простой, можно сказать идеализированный случай, обращались к рассмотрению более сложных вариантов взаимодействий в системе фермент-субстрат. [c.78]

    Но сложная сеть химических реакций, в частности ферментативных реакций, также может быть представлена графом. В этом случае узловые точки изображают различные состояния вещества, например молекулу свободного фермента, фермента, присоединившего субстрат или ингибитор, и т. д. Линии, соединяющие эти состояния,— пути реакций, в ходе которых одно состояние переходит в другое. Каждый путь характеризуется определенной константой скорости реакции, подобно тому, как проводник в графе, изображающем электрическую сеть, характеризуется значением электропроводности. Метод графов позволяет просто и быстро решать задачи химической кинетики, вычислять скорости сложных, разветвленных химических реакций. [c.316]

    Изучение простого механизма реакции, описываемого уравнениями (6.33) — (6.35), хотя и помогает нам войти в область ферментативной кинетики, однако, в действительности этот подход имеет много недостатков. Самым явным из них является предположение о том, что существует только один промежуточный комплекс — комплекс Е8. При более реальном подходе необходимо допустить существование по крайней мере еще одного комплекса, который образуется в результате обратной реакции Е + Р ЕР, где Р — продукт реакции. Конечно, начальное взаимодействие фермента с продуктом не может быть таким же, как начальное взаимодействие фермента с субстратом. По-видимому, более близкий к истинному механизм можно записать уравнением [c.350]

    Выяснение механизма регуляции клеточного метаболизма является одной из ключевых проблем современной биологической химии. Решение этой проблемы требует всестороннего изучения способов контроля метаболизма па разных уровнях организации на уровне функционирования отдельных ферментов, мультифермент-ных комплексов, субклеточных структур и клетки в целом. Математическое моделирование биохимических процессов па всех уровнях представляет большой интерес. В настоящем учебном пособии предпринята попытка описать новые методы ферментативной кинетики, применение которых способствовало бы установлению кинетической схемы отдельной ферментативной реакции. Эта проблема очень существенна. Ведь даже очень простые ферментативные реакции проявляют сложное динамическое поведение фермент может связывать различные лиганды и переходить из одного устойчивого режима функционирования в другой причем могут иметь как колебательный, так и неколебательный характер. [c.107]

    Простейшие ферментативные реакции, рассмотренные в 2.1 и 2.2, являются односубстратными. Однако многие ферментативные реакции для получения конечного продукта требуют нескольких субстратов. В связи с этим в 2.3 даны основы кинетики многосубстратных реакций. Показано, что существуют два основных механизма многосубстратных реакций механизм образования тройного комплекса и пинг-понг-механизм, отличающихся наличием или отсутствием необратимой стадии между этапами включения субстрата в реакции. Рассмотрены методы дискриминации этих механизмов. [c.332]

    Основная идея о принципах биокатализа возникла еще в начале нащего века благодаря трудам Брауна и Анри и позднее была развита Михаэлисом и Ментен, а также Бриггсом и Холденом. Идея заключается в том, что механизм каталитического действия ферментов состоит в общем случае в образовании между ферментом и субстратом промежуточных соединении, претерпевающих в ходе реакции последовательные превращения вплоть до образования конечных продуктов и регенерации фермента. Действительно, в простейшем случае описание кинетики ферментативной реакции укладывается в рамки так называемой двухстадийной схемы  [c.216]

    Настоящее пособие — первое в мировой литературе учебное руководство по анализу и обработке кинетических данных ферментативных реакций. В первой части курса наложены методы анализа кинетических закономерностей простых химических реакций, изуче-иие их необходимо для дальнейшего понимания кинетики и механизма действия ферментов. Во второй части книги рассмотрены методы обработки кинетических данных ферментативных реакций-Особое внимание здесь уделено новым- подходам, не нашедшим до последнего времени отражения в учебной литературе (новые методы нахождения элементарных констант, влияние диффузии на кинетику действия иммобилизованных ферментов, использование интегральных форм кинетических уравнений и др.). Каждая глава сопровождается О ригинальными задачами с подробными решениями. [c.2]

    Большая часть проблем ферментативной кинетики сводится к анализу предполагаемых схем ферментативных реакций, выводу уравнений скорости, соответствующих этим схемам, и сопоставлению полученных зависимостей с данными эксперимента. Когда мы рассматривали простые кинетические схемы ферментативных реакций (двух- и трехютадийные механизмы действия ферментов, двухстадийные ферментативные реакции в присутствии простей-щих эффекторов — ингибиторов и активаторов и т. п.), т. е. когда мы имели систему из двух-трех алгебраических уравнений, ее можно было легко решить обычным путем, не прибегая к существенным упрощениям. [c.284]

    Важно подчеркнуть, что каждая молекула полимерного субстрата фактически представляет собой цслы11 спектр субстратов (реакционных центров) с различной реакционной способностью. Это обстоятельство и отличает в первую очередь с точки зрения кинетики и механизмов реакций ферментативное превращение полимеров от превращения простых субстратов, имеющих только один реакционный центр на молекулу. При этом следует выделить два важней-щих положения, определяющих закономерности ферментативной деградации полимеров. Во-первых, при деградации одной молекулы полимерного субстрата (в особенности регулярного полимера) образуется много молекул конечного продукта, что может приводить к своеобразным кинетическим закономерностям подобных реакций (например, в ряде случаев может наблюдаться увеличение молярной концентрации образующегося продукта при неизменной — исходного субстрата). Во-вторых, реакционная способность-полимерного субстрата, как правило, убывает в ходе его ферментативной деградации. Иначе говоря, значения констант скоростей ферментативного превращения полимера прогрессивно уменьшаются по мере уменьшения степени полимеризации субстрата, что, в свою очередь, зачастую приводит к фактическому прекращению реакции при неполных степенях конверсии исходного полимера. [c.3]

    Известно, что кинетику ферментативных реакций можно изучать с помощью регистрации либо начальных участков кинетической кривой, либо достаточно протяженных ее участков (практически до полного завершения реакции) [21]. В первом случае изучение преврапгений полимеров не отличается принципиально от изучения реакций любых других (простых) субстратов, поскольку в начальный период реакции ферментативной атаке могут подвергаться различные по реакционной способности участки полимера в зависимости от их относительного содержания и относительного сродства фермента к ним. Поэтому соответствующие эффективные кинетические параметры ферментативной реакции (константы Михаэлиса, каталитические константы) являются некоторыми средними величинами и не могут быть использованы для описания и теоретического предсказания временного хода ферментативного процесса на достаточно больших глубинах превращения полимеррюго субстрата. [c.29]

    Ясно, что эти данные могут быть интерпретированы более простым образом, а именно что способ действия фосфорилазы (априорно принятый в цитируемой работе [16] как канонический для неупорядоченного действия фермента) несколько отличается от способа действия р-амилазы, что приводит к различному распределению продуктов деструкции полимерного субстрата по молекулярным массам (степени полимеризации). Как неоднократно указывалос . выше, это наиболее характерный признак действия деполимераз, и в рамках кинетики и субстратной специфичности действия ферментов он обусловлен различной зависимостью кинетических параметров ферментативной реакции от степени полимеризации (длины цепи) олигосахаридов. С точки зрения термодинамики действия деполимераз этот характерный признак объясняется различным числом сайтов в активном центре фермента, различным их сродством к мономерным остаткам субстрата и положением каталитического участка в активном центре. Как видно, и в этом случае введение гипотезы о множественной атаке было излишним и преждевременным, так как экспериментальные данные, полученные авторами работы [16], не были подвергнуты тщательному анализу. [c.91]

    Для всестороннего изучения морфолого-физиологических свойств и продуктов обмена, прежде всего, микробов все ранее предложенные способы их выращивания оказались малопригодными Более того, накопление однородной по возрасту большой массы клеток оставалось исключительно трудоемким процессом Вот почему требовался принципиально иной подход для решения многих задач в области биотехнологии В 1933 году А. Клюйвер и Л X Ц Перкин опубликовали работу "Методы изучения обмена веществ у плесневых грибов", в которой изложили основные технические приемы, а также подходы к оценке и интерпретации получаемых результатов при глубинном культивировании грибов С этого времени начинается третий период в развитии биологической технологии — биотехнический Началось внедрение в биотехнологию крупномасштабного герметизированного оборудования, обеспечившего проведение процессов в стерильных условиях Особенно мощный толчок в развитии промышленного биотехнологического оборудования был отмечен в период становления и развития производства антибиотиков (время второй мировой войны 1939 — 1945 гг, когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами) Все прогрессивное в области биологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии Следует отметить, что уже в 1869 г Ф Мишер получил "нуклеин (ДНК) из гнойных телец (лейкоцитов), В Оствальд в 1893 г установил каталитическую функцию ферментов, Т Леб в 1897 г установил способность к выживанию вне организма (в пробирках с плазмой или сывороткой крови) клеток крови и соединительной ткани, Г Хаберланд в 1902 г показал возможность культивирования клеток различных тканей растений в простых питательных растворах, Ц Нейберг В 1912 г раскрыл механизм процессов брожения, Л Михаэлис и М Л Ментен в 1913 г разработали кинетику ферментативных реакций, а А Каррел усовершенствовал способ выращивания клеток тканей животных и человека и впервые применил экстракт эмбрионов для ускорения их роста, Г А Надсон и Г С Филлипов в 1925 г доказали мутагенное действие рентгеновских лучей на дрожжи, а в 1937 г Г Кребс открыл цикл трикарбоновых кислот (ЦТК), в 1960 [c.16]

    Теплый прием, оказанный нашему первому учебнику — Биологической химии ,— побудил нас написать эту вторую книгу, рассчитанную на несколько иной круг читателей, но вместе с тем сохраняющую в какой-то степени главные особенности своей предшественницы. Опыт показал, что с успехом пользоваться Биологической химией могут лишь студенты, имеющие хорошую подготовку как по физической, так и по органической химии. Кроме того, эту книгу оказалось довольно трудно приспособить не только для односеместрового, но даже и для более длительного курса обучения, в котором наряду с основным материалом рассматривается значительное количество сведений частного характера, не имеющих] прямого отношения к главным проблемам биохимии. Слабо подготовленные по химии студенты и короткие учебные курсы — явление совершенно обычное, но вряд ли этим можно извинить настолько поверхностное изложение предмета, чтобы студент так и не приобрел в конечном итоге знаний, необходимых для понимания тех проблем, с которыми ему предстоит иметь дело. Учитывая это, мы попытались подготовить своего рода адаптированное издание Биологической химии , которое удовлетворяло бы предъявляемым требованиям. Таким образом, главные различия между Основами биологической химии и Биологической химией касаются не содержания или композиции, а самого подхода к предмету. Математический анализ данных во всех тех случаях, когда он представлялся нам слишком трудным, заменен простым описанием основной упор сделан не на физическую химию макромолекул или кинетику и механизм ферментативных реакций, а на рассмотрение процессов метаболизма и на проблемы молекулярной биологии опущены слишком подробные описания экспериментов и, наконец, для введения студентов в новые области биохимии в меньшей степени используются оригинальные экспериментальные данные. Мы надеемся, что при таких изменениях нам удастся донести материал, составлявший содержание Биологической химии , до новой группы студентов, сделав его понятным и для них. Глубина изложения, разумеется, приносится при этом в жертву как из-за сокращения объема книги, так и потому, что мы вынуждены считаться с возможностями нашей новой аудитории. Однако нам кажется необходимым подчеркнуть, что и в таком новом виде освещение каждого раздела останется достаточно серьезным и глубоким. Читатели старого и нового учебников будут, очевидно, пользоваться разным языком, но общее понимание предмета будет у них приблизительно одинаковым. [c.7]

    К-рые по экспериментальным данным позволяют определять V и К . Еще более сложный вид имеют ур-ния кинетикн двухсубстратных ферментативных реакций, в особенности обратимых реакций, в к-рых фермент-субстратные комплексы претерпевают многостадийные иревращения. Однако в значительном числе случаев, исследуя завпсимость начальной скорости реакции от концентрации субстрата, оказывается возможным вычислить основные кинетич. константы — максимальную скорость реакции (К) и константу Михаэлиса (К ). В случав простых механизмов (см. выше), если известна молярная концентрация фермента, по величине V может быть рассчитана константа скоростп распада фермент-субстратного комплекса, поскольку /с-)-2=7/[Е] ). Нетрудно видеть, что эта величина представляет собой молекулярную активность фермента. Величина константы Михаэлиса даже для простейших ферментативных реакцпй более сложна для интерпретации, поскольку определяется соотношением трех констант скорости. В случае, когда к+ <к х, К хк Цк 1 = К , следовательно, представляет константу диссоциации комплекса Е8 на Е и 8, к-рая в ферментативной кинетике наз. константой субстрата и обозначается К . Константа субстрата служит мерой сродства фермента к субстрату (сродство обратно пропорционально величине А д) и, следовательно, является важной мерой каталнтич. эффекта Ф. Кон- [c.208]

    Основное достоинство книги Уэстли — последовательное изложение теории и методов ферментативной кинетики, начиная от простых односубстратных реакций и кончая сложными полиферментными системами. Автор, имеющий немалый опыт собственных кинетических [c.5]

    В последние годы все чаще обнаруживаются ферментативные реакции, не подчиняющиеся так называемой кинетике Михаэлиса (простой гиперболической зависимости начальной скорости реакции от концентрации субстрата). Кинетика таких, реакций представляет большой интерес, поскольку она может быть связана с механизмом саморегуляции на уровне индивидуального фермента. В книге Уэстли эти актуальные допросы рассмотрены, по нашему мнению, несколько поверхностно и не вполне отражают современное состояние теории, развивающейся особенно интенсивно в последние 2 — 3 года. По этим причинам мы сочли целесообразным снабдить гл. XV, посвященную регуляции активности ферментов, небольшими подстрочными примечаниями и ссылками на работы, вышедшие в последнее время. В список лит - [c.6]

    Таким образом, переходная стадия ферментативной реакции вполне поддается строгому теоретическому анализу (конечно, если исследуется односубстратная модельная система или некоторые другие системы, рассмотренные Лейдлером [3] и Гутфрейндом [1]). В некоторых отношениях такой подход оказывается более простым и более прямым, чем методы стационарной кинетики. [c.182]

    Несмотря на то что схема (1.7) и уравнение Михаэлиса — Ментен не соответствует на молекулярном уровне ни одному механизму реакции, его использование получило большое распространение. Это одно из фундаментальных уравнений ферментативной кинетики. Уравнение Михаэлиса — Ментен феноменологически описывает практически все ферментативные реа1кции, а наблюдаемые отклонения, как правило, связаны с усложнением простейшей схемы. Дело в том, что уравнение Михаэлиса — Ментен отражает фундаментальную особенность ферментативных реакций — участие в механизме процессов лабильных промежуточных соединений субстрата и активного центра фермента. [c.12]

    В целом уровень — это сфера действия специфических законов, выражаемых в виде системы относительно однородных понятий и гипотез. Экстраполяция законов и представлений одного уровня на другие требует очень осторожного подхода и тщательной проверки. Известно, какие серьезные изменения в теоретических основах физики вызвал переход от исследований с макроуровня на уровень изучения микромира создавались новые гипотезы и теории, коренным образом изменялось содержание старых понятий. Специфика живого одного уровня также несводима и не может быть объяснена только законами, действующими на предшествующем уровне закономерности роста и размножения клеток не могут быть полностью описаны в терминах кинетики ферментативных реакций закономерности роста полуля-ции не могут быть выведены только на основании представлений о характере деления одной клетки. Это все является следствием усложнения кооперативного взаимодействия простых элементов, образующих систему нового уровня сложности в иерархии структур. [c.18]

    Афанасьев показал в ряде работ, что уравнение (5.22) описывает большой экспериментальный материал и является более обобщающим, чем уравнение Михаэлиса. Пасынскнй считает, что вместо двух молекул фермента в реакции могут принимать участие два участка активного центра одной и той же молекулы фермента. При этом уравнение (5.22) сохраняет свою силу, так как символ может означать как число молекул, так и число участков активного центра, входящих в активный комплекс. Тем не менее при описании кинетики ферментативных реакций в настоящее время пользуются в основном простыми уравнениями с одним субстратом (одним активным центром). [c.227]

    Гипотеза двух групп допускает простое математическое описание, а качественная картина ясна из общих соображений. При малых значениях pH обе рассматриваемые группы будут протонированными, и в связи с этим фермент окажется неактивным. При высоких pH обе группы лишены протонов, в связи с чем фермент также окажется неактивным. И только в области pH, лежащей между рК1 и рКг, значительная часть фермента содержит одну протонированную и одну депрото-нированную группу, что по сделанному предположению отвечает активной форме. Количественная обработка этой гипотезы сводится к подсчету концентрации промежуточной формы фермента с помощью двух констант ионизации и Кг для соответствующих групп. Формальная сторона задачи совпадает с изучением диссоциации двухосновной кислоты, что в свое время было использовано Михаэлисом в кинетике ферментативных реакций для описания кривой зависимости ферментативной активности от pH. Если через ЕНг, ЕН и Е обозначить три рассматриваемые формы фермента, из которых активна только ЕН , то сказанному отвечает схема [c.75]

    В 1913 г. немецкий ученый Л. Михаэлис и его ассистентка М. Ментен предположили, что механизм каталитического действия ферментов в общем случае заключается в образовании между ферментом и субстратом промежуточных соединений, претерпевающих в ходе реакции последовательные превращения вплоть до образования конечных продуктов и регенерации фермента. В простейшем случае описание кинетики ферментативной реакции представляют в виде следующей двухстадийной схемы  [c.104]


Смотреть страницы где упоминается термин Кинетика простых ферментативных реакций: [c.360]    [c.365]    [c.211]    [c.43]    [c.120]    [c.163]   
Смотреть главы в:

Биофизика -> Кинетика простых ферментативных реакций

Молекулярная биофизика -> Кинетика простых ферментативных реакций




ПОИСК





Смотрите так же термины и статьи:

Кинетика простых

Кинетика ферментативных реакци

Кинетика ферментативных реакций

Реакции ферментативные

Реакция простая



© 2025 chem21.info Реклама на сайте