Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные пары взаимодействие

    Катион этой ионной пары, взаимодействуя с ароматическим субстратом, образует продукт алкилирования, радикал которого имеет разветвленное строение. [c.385]

    Недавно [64] была изучена реакция трифенилфосфина с а-бром-сульфонами и получены убедительные доказательства того, что реакция протекает через атаку по атому брома. Так, в двух случаях ионная пара взаимодействует с метанолом, как показано на следующей схеме  [c.181]


    Коэффициенты избирательности различных сульфо-СХК сопоставлены на рис. 4. Из рисунка видно, что сульфо-СХК-2, обладающий наиболее упорядоченной структурой, проявляет наименьшую избирательность. Поскольку резкое падение избирательности поглощения по мере насыщения ионита металлическими ионами связывается с энергетической неравноценностью обменных мест ионита, такие свойства сульфо-СХК-2 естественны. Образование ионных пар взаимодействием через цепь затруднено в случае плотной упаковки продольных цепей полимерных сеток. [c.176]

    Ион в кристаллической решетке притягивается всеми соседями, а в ионной паре взаимодействует лишь с одним близлежащим соседом. Следовательно, можно ожидать, что расстояние между ионами в кристаллической решетке будет больше, чем соответствующее расстояние в паре ). Данные, полученные из электронографических исследований [331 и микроволновых спектров [34] паров галогенидов натрия, калия, рубидия и цезия, подтверждают этот вьшод. Во всех случаях межионные расстояния в парах в газовой фазе оказались на 10—17% меньше, чем в соответствующих кристаллах. [c.231]

    Как отмечалось, при полном экранировании поля противоиона при его сольватации растворителем наблюдается анионный тип процесса, при котором активные центры представляют собой ионные пары или свободные карбанионы. Активность ионных пар, естественно, будет определяться их строением и условиями проведения процесса. При изучении различных систем было показано, что при полимеризации на ионных парах взаимодействие карбаниона с противоионом оказывает большое влияние на акты роста цепи. Ослабление этого взаимодействия вследствие влияния различных факторов изменения температуры, природы противоиона, растворителя, увеличения стабильности карбаниона или действия стерических причин (разветвленный карбанион), приводит к возрастанию скорости процесса и увеличению концентрации свободных ионов. [c.202]

    Это особенно актуально при рассмотрении вопроса о ионных парах и сольватных оболочках ионов.) Ионные растворы с измеримыми концентрациями существуют только благодаря тому, что взаимодействия между ионами и молекулами растворителя достаточно сильны, чтобы преодолеть взаимодействие между ионами. В противном случае соль была бы нерастворима. При рассмотрении ионных систем мы, таким образом, сталкиваемся с так называемыми силами, действующими на далеких расстояниях, т. е. между сильно взаимодействующими частицами. Чтобы оценить величину этих взаимодействий, подсчитаем их, исходя из чрезвычайно простых, но полезных электростатических моделей. Из электростатической теории следует, что сила взаимодействия между двумя точечными зарядами 218 и на расстоянии г в вакууме равна [c.444]


    Если воспользоваться несколько более сложной теорией, предложенной Мейером [47], можно добиться полного количественного совпадения. Из приведенных результатов ясно видно, что многовалентные ионы противоположных зарядов сильно взаимодействуют в растворах. Это приводит к образованию ионных пар или комплексных ионов. Так, в водном растворе ионы [c.451]

    Приведенные в табл. XV.9 данные подтверждают мысль об относительной важности специфического взаимодействия ионных пар. [c.464]

    Реакция обрыва, вероятно, может протекать и в результате передачи цепи при взаимодействии растущей полимерной ионной пары с мономером, растворителем или примесями  [c.329]

    Образование отдельных ионов при взаимодействии хлорида алюминия и хлористого этила маловероятно, так как это связано с разрывом связи у первичного атома углерода С—С1, что энергетически невыгодно. При взаимодействии хлористого трет-бу-тила с хлоридом алюминия возможна его диссоциация с образованием ионов или ионной пары, так как в этом случае связь С—С1 значительно ослаблена  [c.331]

    Как упоминалось выше, большое влияние на физические и химические свойства ионных пар оказывает взаимодействие их с растворителем. В этом отношении растворители можно подразделить на три группы. [c.18]

    Однако было бы неправильным считать, что все сводится к взаимодействию заряженных частиц со средой, к действию электростатических сил. Так, может происходить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к распределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества,— а для растворителя с низкой диэлектрической проницаемостью и при сравнительно небольших его концентрациях,— в результате усиления влияния заряженных частиц друг на друга могут образоваться ионные пары и более сложные группировки, содержащие как ионы, так и молекулы. [c.168]

    Наряду с отмеченными эффектами при контакте полярного растворителя с ионитом наблюдается сольватация ионов, обусловленная электростатическим взаимодействием заряженных ионов с ди-польными молекулами растворителя. Чем меньше дипольный момент растворителя, тем меньше склонность ионита к сольватации. С уменьшением диэлектрической постоянной растворителя увеличивается электростатическое взаимодействие между противоположно заряженными ионами, что способствует образованию ионных пар и ассоциации, а также уменьшению осмотической активности ионов и разности осмотических давлений. Все эти факторы уменьшают степень набухания, но при этом силы отталкивания между фиксированными ионами возрастают до тех пор, пока не будут нейтрализованы в результате ассоциации с противоиона-ми [1]. [c.374]

    С увеличением диэлектрической проницаемости взаимодействие между ионами ослабевает и они разделяются— диссоциируют. Если среда, в которой идет реакция, имеет высокую диэлектрическую постоянную, то ионы почти полностью разделены молекулами растворителя. Если растворитель имеет низкую диэлектрическую проницаемость, то в растворе присутствуют в основном контактные и частично сольватно разделенные ионные пары. С увеличением температуры диэлектрическая проницаемость уменьшается и доля ионов, не зависящих от противоиона, снижается, а доля ионов, находящихся в ионных парах, соответственно растет. Так как ионы в парах значительно менее активны, чем одиночные, повышение температуры может понизить скорость реакции в результате снижения концентрации одиночных ионов. [c.163]

    Притяжение незначительной части противоионов в жидкости и образование ионных пар может возникнуть лишь тогда, когда они вследствие, например, турбулентного перемещивания или другого силового воздействия сближаются между собой на расстояние, при котором электростатическое взаимодействие становится равным или большим кТ. Находящиеся в жидкости ионы и электрически нейтральные дипольные и неполярные молекулы взаимодействуют между собой за счет электростатических и дисперсионных сил. [c.27]

    Механизм типа Sn2(промежуточный) вызвал ряд критических замечаний (см., например, работы [667, 668] и цитированную литературу). Можно предложить альтернативный механизм, включающий гетеролиз свяэи R3 —X и образование соответствующей ионной пары с последующей определяющей скорость реакции нуклеофильной атакой растворителя. В этом случае обратный распад комплекса на реагенты будет происходить быстрее, чем нуклеофильная атака с образованием продуктов реакции. Так, сольволиз вторичных 1-арилэтилтозилатов АгСН(ОТоз)СНз можно объяснить и в рамках механизма с участием ионной пары, в котором главную роль играет атака нуклеофильным растворителем на ионную пару [667]. В менее нуклеофильных растворителях эта атака определяет скорость реакции, в то время как атака более нуклеофильным растворителем осуществляется очень быстро и скорость реакции зависит от предыдущей стадии ионизации R3 —X. Следует отметить, однако, что в общем случае ионная пара взаимодействует с растворителем неспециф.ично (т. е. не путем ковалентного связывания одной молекулы нуклеофильного растворителя) и, следовательно, механизм Sn2(промежуточный) здесь не реализуется [667]. [c.350]


    Диполи ионных пар взаимодействуют также со свободными яонэ-мй, образуя отрицательно или положительно заряженные ионные тройники САС+ или АСА". Они образуются при достаточно низких кок- [c.505]

    Можно сделать вьшод, что в гидропероксидазе механизм кооперативного взаимодействия между двумя центрами белка, который проявляется в миоглобинах и гемоглобинах, развился в одном определенном направлении, которое позволяет им связьшать протон вместе с одноосновным анионом. Более высокая степень кооперативности, вероятно, связана с тем, что обе связываемые частицы заряжены. Это обеспечивает функционирование механизма, облегчающего связывание в активном центре фермента анионов сильных неорганических кислот, таких, как С "" и I (например, при ферментативном галогенировании), которые с трудом связываются с металлами и с трудом образуют ионные пары. Взаимодействие с ними идет по схеме [c.209]

    Однако для более высоких концентраций такая простая модель раствора ун е не представляет ценности, бопее того, приближение > 1г г/ЬкТ < 1 не может использоваться вблизи иона г [см. уравнение (ХУ.7.2)]. По Бьер-руму [50], любую пару ионов, взаимодействие между которыми составляет величину порядка 2кТ и более, следует рассматривать как ионную пару, а пе как независимые ионы, а теория Дебая — Хюккеля справедлива лишь для свободных ионов, находящихся друг от друга на расстоянии, достаточном для того, чтобы взаимодействие между ними было меньше 2кТ. Если обозначить это расстояние гв и пренебречь ионной атмосферой вокруг такой ионной пары , то для пары, образованной двумя ионами с. зарядами 2, и получим [c.452]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Катионная полимеризация. Стадией инициирования при катионной полимеризации является образование комплексных ионов или ионных пар при взаимодействии кислот Льюиса с водой, га-логенводородами, галогеналкилами и т. п. В средах с низкой диэлектрической проницаемостью, где свободные катионы практически отсутствуют, процесс роста цепи осуществляется при непосредственном участии противоиона. [c.178]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Однако следует помнить, что при работе в неполярных средах даже с самыми липофильными катионами их растворимость и способность к экстракции являются только предварительно необходимым условием успешного проведения химической реакции. Как было показано в гл. 1, при сравнении различных катализаторов видно, что прямая связь между их растворимостью, экстрактивными свойствами и анионной активностью или скоростью реакции отсутствует. Следует учитывать наряду с равновесиями, предшествующими реакции, также и другие факторы. Особенно важными среди них являются взаимодействие аниона и катиона в ионной паре и количество гидратной воды, переносимое в органический слой. Поэтому неудивительно, что в гомологическом ряду, например для симметричных тетраалкиламмо-нийных солей, при переходе от очень гидрофильных к липофиль-ны-м ионам активность возрастает чрезвычайно резко, а затем, когда начинают сказываться эти другие факторы , она медленно уменьшается. [c.68]

    Межфазный катализ включает образование ионных пар, в которых анион и катион довольно тесно связаны. Возможно, поэтому ассиметричное влияние хирального катиона катализатора на реакции анионов приводит к частичному разделению рацематов, т. е. к оптической индукции. Необходимым условием такого эффекта является достаточно тесное взаимодействие аниона и катиона и только в одном из нескольких возможных положений и конформаций. Высокая подвижность аниона по отношению к катиону препятствует этому эффекту. Использование с этой целью четвертичных аммониевых солей с хиральным центром в углеродном скелете, по-видимому, малоперспективно, если только анион-катионное взаимодействие не усиливается дополнительной полярной группой (например, группой ОН, способной образовывать водородную связь). Лучшими катализаторами могут быть соединения с хиральным аммонийным азотом, который с трех сторон стерически экранирован [1173, 1601]. [c.102]

    Обычно в растворе устанавливается равновесие между этими тремя формами, положение которого зависит от различных факторов (см. ниже), однако наличие в молекуле жесткого скелета может привести к тому, что будет существовать только одна форма. Свойства этих трех форм и особенно кислотность и способность к образованию ионных пар и к их диссоциации весьма различаются. Было показано [362], что в неполярных растворителях еноляты щелочных металлов ациклических р-ке-тосоединений находятся главным образом в О-форме и между анионом и катионом существует сильная ассоциативная связь. Это взаимодействие остается сильным даже в водных растворах [362]. [c.197]

    Показано [617], что при взаимодействии третичного амина, олефина и хлороформа (2 ч, 50°С) в отсутствие гидроксида натрия не образуется аддуктов дихлоркарбена. Далее, не наблюдалось также какой-либо реакции при продолжительном кипячении три-н-пропиламина и хлороформа [447]. Кимура и сотр. [623] считают, что А переносит дихлоркарбен к олефину. Однако Макоша [433] показал, что образование А не является обратимым при взаимодействии эквимолярных количеств третичного амина и хлороформа со стиролом и NaOH не образуется аддукт дихлоркарбена со стиролом. Макоша считает, что при нормальных условиях (при избытке хлороформа) А де-протонирует хлороформ с образованием ионной пары В, которая затем может переносить ССЬ с образованием С. Затем С разлагается на хлороформ и амин, и цикл может начаться снова [433]. [c.325]

    Для нейтральных частиц образование комплекса возможно в результате мультипольного электростатического взаимодействия, нри заметном перекрывании их электронных оболочек в области дейстиия обменных сил, либо же при образовании ионной пары, которая стабилизируется переходом электрона с одпой молекулы на другую. [c.138]

    Угловое распределение продуктов, характерное для срывных реакций, может быть обусловлено взаимодействиями различ1гы с видов. Для реакции щелочных металлов М с молекулами галогенов М. Полани в 1935 г. и Маги в 1940 г. предложили модель реакции с переходом электрона, позднее получившей название модели гарпунирования [139, 318) при сближении М и Х2 на некотором расстоянии происходит перескок электрона, приводящий к образованию ионной пары 1М+Х7. Затем отрицательный ион дис- [c.138]

    Взаимодействие НХ с катализатором протекает по обратимой реакции с высокой скоростью, при этом образуются комплексы с переносом заряда или ионные пары, что подтверждается методами УФ- и ИК-спектроскопии, изменениял дипольного момента и давления паров (подробнее см. гл. 4) последующее образование (т-комплексов в результате взаимодействия их с аренами является более медленной стадией. Большое влияние на дальнейшее превращение ст-комплексов оказывает основность растворителей. Действительно, если реакцию проводить без растворителей или со слабоосновными растворителями, то образующиеся алкилбензолы, обладающие более основными свойствами, чем исходный бензол, накапливаются в виде комплекса [c.45]

    Вначале образуется пара ионов С4Н9р (а), окруженная молекулами среды. Такая ионная пара называется контактной. Разделение ионов приводит к образованию сольватно разделенной ионной пары (б), в которой ионы еще достаточно сильно взаимодействуют. Далее происходит диссоциация, приводящая к образованию независимых друг от друга ионов (Ь). Ион, находящийся в контактной паре, наименее активен константа скорости его реакций с молекулами углеводорода на несколько порядков меньше, чем для свободного иона. [c.163]

    Электропроводность растворов можно измерять с высокой точностью только в разбавленных растворах. В этом случае выполняются требования теории межионного взаимодействия Дебая — Гюккеля— Онзагера и зависимость X—Ус линейна для 1—1-валентного электролита (в то время как зависимость 7—с —не линегаа — см. рис. 2.1). Отклонение от линейной зависимости к—Ус свидетельствует об образовании ассоциатов, ионных пар. На практике линейная зависимость реализуется только для растворов электролитов в отсутствие примесей ионного характера. В силу этих причин, как указывалось ранее, следует отдавать предпочтение методу кондуктометрического титрования, а не прямой кондуктометрии. [c.104]


Смотреть страницы где упоминается термин Ионные пары взаимодействие: [c.130]    [c.130]    [c.454]    [c.461]    [c.463]    [c.39]    [c.57]    [c.71]    [c.141]    [c.198]    [c.174]    [c.71]    [c.73]    [c.75]    [c.77]    [c.141]    [c.108]   
Термодинамика и строение водных и неводных растворов электролитов (1976) -- [ c.288 , c.293 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Ионная пара

Ионов взаимодействие



© 2025 chem21.info Реклама на сайте