Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа диссоциации комплекса фермент субстрат

    ТОГО, если данный комплекс важен при катализе, то константы диссоциации, измеренные при изучении связывания, должны приближаться к константам, определенным при изучении начальной скорости реакции в целом, хотя различие в используемых концентрациях белка может вызвать в некоторых случаях трудности при интерпретации. Необходимые константы могут быть получены из изучения начальной скорости для иона металла Ка) и для лиганда, если он является ингибитором Кг). Однако константы диссоциации комплексов фермент — субстрат и фермент — продукт не так легко получить, пока не сделаны допущения относительно скоростьопределяющей стадии реакции и (или) порядка присоединения субстрата (или отщепления продукта). Следовательно, утверждение о кинетической важности таких комплексов, наиболее интересных с точки зрения изучения механизма действия металлоферментов, связано с большими сложностями. [c.450]


    Ингибиторы, структурно аналогичные субстрату, способны связы- аться с субстрат-связывающим центром. В случае истинного конкурент-.ного ингибирования должна иметь место конкуренция между субстратом и ингибитором за связывание с одним и тем же центром, а кроме того, связывание одного из этих лигандов должно исключать связывание другого. Сродство ингибитора к ферменту количественно выражается константой ингибирования Ki, которая представляет собой константу диссоциации комплекса фермента с ингибитором Е1  [c.27]

    При изучении кинетики анаэробной реакции р-хлоралани-на с оксидазой В-аминокислот было найдено, что цианид-анионы ускоряют реакцию гидрирования фермента при окислении субстрата [16]. Исходя из данных табл. 18, найти значение константы диссоциации комплекса фермент-активатор и величину максимальной скорости ферментативной реакции при избытке цианид-ионов. [c.97]

    Как уже говорилось, ферментативная реакция складывается из узнавания субстрата или субстратов с их размещением должным образом относительно активного центра фермента и самого акта катализа. Долгое время существовало представление, что узнавание, т.е. сродство субстрата к ( ерменту, может характеризоваться константой Михаэлиса, которая приближенно равна константе диссоциации комплекса фермент—субстрат, во всяком случае если величина кат имеет тот же порядок или меньше, чем величина к-1 [см. уравнение (6.6)]. Это представление, качественно не подвергающееся сомнению, оказалось недостаточным, когда началось систематическое количественное рассмотрение вопроса о специфичности ферментов. [c.224]

    В случае фермента химотрипсина в качестве конкурентных ингибиторов часто выступают оптические антиподы асимметрических субстратов. Разница между оптическими изомерами подразумевает взаимодействие между ферментом и субстратом в трех точках, как это изображено схематически на рис. 123, на котором группы Р и р субстрата присоединены к поверхности молекулы фермента группами А и В, а па чувствительную связь К воздействует группа С. В случае оптического антипода субстрата взаимодействующие группы Р и Q точно так же могут быть соединены с группами А и В, однако группа В теперь слишком далеко удалена от воздействующей на нее функциональной группы С. Согласно этой модели, можно было ожидать, что константы диссоциации комплексов фермент-субстрат и фермент-ингибитор почти одинаковы. Поскольку экспериментально доказано, что константы диссоциации многих комплексов фермент-ингибитор соответствуют значениям субстрата, в этом случае можно [c.326]


    Конкурентное ингибирование проще всего можно распознать экспериментальным путем, определив влияние концентрации ингибитора на зависимость начальной скорости реакции от концентрации Субстрата. Для выяснения вопроса о том, по какому типу-конкурентному или неконкурентному-происходит обратимое ингибирование фермента (дополнение 9-3), весьма удобно преобразовать уравнение Михаэлиса-Ментен в линейную форму. Чаще всего для этой цели используют метод двойных обратных величин. Из графиков, построенных в двойных обратных координатах, можно определить также значение константы диссоциации комплекса фермент-ингибитор. Для реакции диссоциации [c.246]

    Подход к измерению константы продукта может быть двояким. Продукт реакции вводится заранее в систему фермент — субстрат, после чего измеряется зависимость начальной стационарной скорости реакции в ряду концентраций субстрата и продукта. Этот способ фактически ничем не отличается от способа исследования обычных обратимых ингибиторов. Он позволяет выяснить характер ингибирующего действия продукта реакции, т. е. установить, является ли он конкурентным, неконкурентным или смешанным, и измерить константу диссоциации комплекса фермент -г- продукт. [c.99]

    Кт (называется константой Михаэлиса) — константа диссоциации в реакции образования комплекса фермент — субстрат. Как и все константы диссоциации, константа Михаэлиса имеет размерность концентрации и при V = величина [c.151]

    К-рые по экспериментальным данным позволяют определять V и К . Еще более сложный вид имеют ур-ния кинетикн двухсубстратных ферментативных реакций, в особенности обратимых реакций, в к-рых фермент-субстратные комплексы претерпевают многостадийные иревращения. Однако в значительном числе случаев, исследуя завпсимость начальной скорости реакции от концентрации субстрата, оказывается возможным вычислить основные кинетич. константы — максимальную скорость реакции (К) и константу Михаэлиса (К ). В случав простых механизмов (см. выше), если известна молярная концентрация фермента, по величине V может быть рассчитана константа скоростп распада фермент-субстратного комплекса, поскольку /с-)-2=7/[Е] ). Нетрудно видеть, что эта величина представляет собой молекулярную активность фермента. Величина константы Михаэлиса даже для простейших ферментативных реакцпй более сложна для интерпретации, поскольку определяется соотношением трех констант скорости. В случае, когда к+ <к х, К хк Цк 1 = К , следовательно, представляет константу диссоциации комплекса Е8 на Е и 8, к-рая в ферментативной кинетике наз. константой субстрата и обозначается К . Константа субстрата служит мерой сродства фермента к субстрату (сродство обратно пропорционально величине А д) и, следовательно, является важной мерой каталнтич. эффекта Ф. Кон- [c.208]

    При анализе действия обратимых ингибиторов мы рассмотрели взаимосвязь между величиной /во и рациональной мерой реакционноспособности этих ингибиторов — константой диссоциации комплекса фермент — ингибитор. При этом было установлено, что величина /бо лишь в случае чисто неконкурентных ингибиторов совпадает с Кг- Уже для конкурентных обратимых ингибиторов при переходе от Ьо к Кг необходим учет величин константы Михаэлиса и концентрации субстрата, поскольку в системе устанавливается равновесие между Е, 3 и I (стр. 87). Что касается необратимых ингибиторов, то в этом случае использование /во для оценки их реакционноспособности без учета времени реакции не имеет никаких оснований. [c.113]

    Чрезвычайно высокая чувствительность флуоресцентного метода позволяет применять его для изучения свойств самих ферментов и их комплексов с субстратом и коферментом. При измерении, например, констант диссоциации и констант Михаэлиса для комплексов фермент — субстрат или фермент — кофермент спектрофотометрия и другие методы оказываются часто недостаточно чувствительными. Когда субстрат флуоресцирует, можно определять константы Михаэлиса на несколько порядков меньше, чем спектрофотометрическим методом. [c.177]

    При исследовании обратимых ингибиторов определение зависимости константы ингибитора (константы диссоциации комплекса фермент — ингибитор Кд от температуры позволяет рассчитать А/ , АЯ и А5 для взаимодействия ингибитора с ферментом. При этом используются те же уравнения термодинамики, которые применяются для анализа реакции с субстратом. Таким образом, для реакции образования комплекса Е1 [c.135]

    Лишь для нескольких отдельных ферментных реакций было возможно определить величины констант, входящих в Км- Наименьшей по величине, лимитирующей, была константа Кз, как предполагалось теорией. Однако для многих случаев Кз не была лимитирующей, и поэтому оказалось невозможным принимать величину Км за постоянную диссоциации комплекса фермент—субстрат. Несомненно одно — константа Михаэлиса — это величина, хорошо характеризующая действие фермента. Она связана с комплексным, но подчас очень различным взаимодействием между Е и 5. [c.53]


    Поэтому для определения константы диссоциации комплекса необходимо знать величины к и кх- Определить их можно учитывая, что концентрация субстрата во много раз больше, чем концентрация фермента. Концентрации фермента составляют обычно 10 —10 ° моля. При этих условиях в процессе течения реакции концентрация промежуточного комплекса фермент — субстрат будет практически постоянной, т. е. будет соблюдаться условие стационарности  [c.254]

    Это выражение при концентрации субстрата, существенно превышающей концентрацию фермента, по характеру зависимости скорости от концентрации субстрата 5 идентично (6.2), однако вместо константы диссоциации комплекса стоит несколько более сложная величина [c.209]

    Константа диссоциации комплекса Ад, характеризующая меру сродства фермента к субстрату, равна [c.254]

    В случае ферментов константой субстрата условно принято называть константу равновесия реакции (IX. 1) справа налево, т. е. константу диссоциации комплекса Михаэлиса  [c.129]

    При первоначальных исследованиях константа Михаэлиса, о чем уже говорилось выше, воспринималась как константа диссоциации комплекса фермент — субстрат и, естественно, по аналогии с константами диссоциаций в других обратимых реакциях была предложена для оценки сродства субстрата к ферменту. Этот термин взят в кавычки, хотя и применяется широко в энзимологической литературе, по той причине, что он не вполне точен с точки [c.45]

    Соотношение между кинетическими параметрами ферментативной реакции уравнения (13) в прямом и обратном направлениях дается уравнением Хелдена [уравнение (14)], в котором Kg и Кр — константы диссоциации комплексов фермент-субстрат и фермент-продукт соответственно. [c.245]

    В этой связи особый интерес представляет работа Фрица, Траучолда и Верле [69] по исследованию различных ингибиторов протеаз. Сначала на сефадексе Q-50 определяли молекулярный вес нескольких новых ингибиторов. При хроматографировании на сефадексе G-75 комплекс (1 1) трипсина (мол. вес 24 000) и его ингибитора (мол. вес 6500) элюируется в объеме, соответствующем молекулярному весу 26 ООО (вместо предполагаемого 30 500). Авторы объясняют это тем, что комплекс имеет, вероятно, очень компактную структуру (полагая при этом, что ингибитор частично внедряется в молекулу трипсина). Не связанный ингибитор отделяют от смеси комплекса и протеазы на колонке с сефадексом G-50. Авторы определили отдельные компоненты и таким путем нашли константу диссоциации комплекса в различных условиях. Размывания зон, вызываемого сопутствующей диссоциацией, в данном случае не наблюдалось. Аналогичным образом Ауричио [106] доказал образование комплекса фермент — субстрат. Например, трипсин в присутствии казеина элюируется на G-100 гораздо раньше ( мол. вес 100 000), чем в отсутствие субстрата. В то же время казеин не влияет на движение по колонке других белков. [c.178]

    Для проведения измерения готовят раствор субстрата и фермента (в качестве субстрата используют 1-диметиламиноиафта-линсульфонил-пептид в качестве фермента — пепсин) в 0,1 М формиатном буферном растворе (pH 3,1). Концентрации субстрата (моль/л) 0,02-10-3 0,06-10- 0,Ы0- 0,15-10- 0 2-10-з. Концентрация фермента постоянна 7,14-10 моль/л. Измеряют флуоресценцию образовавшегося фермент-субстратного комплекса (А-воаб = 285 нм, >ифл = 500 нм) в каждом из растворов и строят график зависимости aji от l/[So]. По тангенсу угла наклона определяют константу диссоциации комплекса /(,. [c.86]

    Константа Михаэлиса в определенной мере характеризует сродство фермента к субстрату. Так как эта величина является аналогом константы диссоциации комплекса Е8, то чем ниже А м, тем выше сродство. В то же время Кц, как следует из (6.6), превышает констант диссоциации коьшлекса Е8. Как видно нз уравнения (6.9), А м численно равна значетио а, при К07 0р0м достигается значепие скорости, равное половине от К ах- [c.211]

    Томас [97, 98] и Рафтери с сотр. [99—102] наблюдали уширение линий и изменение химических сдвигов сигналов метильных групп ацетамидных фрагментов этих ингибиторов и субстратов в присутствии лизоцима. Рафтери и сотр. изучили взаимодействие АГА, (АГА) 2, (АГА)з и (АГА) 4, а также а- и Р-метилглюкозидов с лизоцимом. Устанавливается равновесие Е+5 Е5, где Е и 5 — фермент и субстрат (ингибитор) соответственно, а Е8 — образованный ими комплекс. Константы диссоциации комплексов /Сз известны. Считается, что обмен свободных и связанных молекул происходит достаточно быстро. Поэтому наблюдаемый сигнал является усредненным. Его положение и полуширина — это средневзвешенные значения химических сдвигов и полуширин линий для обоих окружений в соответствии с молярным соотношением субстрат/фермент, которое всегда было не меньше 4. Однако в некоторых случаях приближение быстрого обмена не выполняется. Обмен оказывается слишком медленным, и его скорость зависит от pH и температуры. В частности, примечательно, что при медленном обмене сигнал ацетамидо-группы сильно уширен за счет не связанного с молекулярным движением вклада в кажущееся значение Тг. [c.389]

    Мудд и Манн [32] усоверщенствовали этот метод (работая вначале с той же системой) и показали, что на основании результатов подобных экспериментов можно вычислить константу диссоциации комплекса. Они применили разработанную методику для количественного описания взаимодействия между ферментом, активируемым метионином, и различными субстратами (или коферментами) (см. также [156]). [c.148]

    Взаимодействие антител с их антигенами сравнимо по специфичности со связыванием субстратов с ферментами. Константы диссоциации комплексов, как правило, находятся в инт ервале 10 5—10 8 моль/л [39]. Для выделения антител используются антигены или гаптены (химически модифицированные группы, выступающие в роли иммуноагентов после их присоединения к белкам или синтетическим полипептидам), против которых эти антитела. получены. В табл. 11.1 даны многочисленные примеры. [c.114]

    СТИ пользу в качественной оценке, во-первых, доступности иона металла для растворителя и, во-вторых, того, какую из трех возможных ролей, описанных в разд. 1, выполняет ион металла в ферментативной реакции. Как установлено Кон [21], фактор усиления (ei) протонов воды для бинарного комплекса Е — М + (еь) может быть больше, чем ei для тройного комплекса Е — М + — лиганд (тип II) (вс). И наоборот, ферменты, образующие комплексы Е — лиганд — M + (тип I), проявляют небольшое взаимодействие фермент — ион металла (либо вообще его не проявляют) и имеют величину Ес> ь 1,0, в то время как в комплексах М.2+ — Е — лиганд (тип III) лиганд может оказывать небольшое влияние на окружение иона металла и еь 8с. Хотя эти закономерности наблюдались для большинства комплексов типов I и II [21], известны исключения. Изучением скоростей релаксации протонов субстрата в присутствии Мп + — фермента для ФДП-альдолазы из дрожжей доказано существование мостиковых комплексов Е — Мп + — субстрат (разд. 9), хотя и наблюдались небольшие изменения для ei протонов воды при образовании этих комплексов (т. е. еь Вс)- Следовательно, хотя сравнение величины ei протонов воды для бинарных и тройных комплексов фермента, металла и лиганда дает простой и быстрый метод определения типа образующегося комплекса, однако эти результаты должны рассматриваться как предварительные и подтверждаться с помощью других методов, например определением г и Ajh (константы сверхто-ного взаимодействия) путем измерения скоростей релаксации магнитного ядра лиганда. Быстрый метод определения констант диссоциации комплексов дает также наблюдение за изменениями ei протонов воды при взаимодействии фермента с Мп2+ и лигандом [21]. [c.456]

    Константа диссоциации комплекса глицилтирозина с КПА при 25 °С равна 1-10-з М (табл. 15.4). Соответствующая ей величина АС составляет —4,1 ккал/моль, что меньше суммы вкладов всех наблюдаемых взаимодействий [57, 58]. Часть энергии связывания предположительно используется для перевода субстрата и (или) фермента в напряженные, т. е. энергетически невыгодные конформации [59—62] (разд. 3.5.1). Таким образом, благоприятные фер-мент-субстратные взаимодействия служат источником энергии для [c.521]


Смотреть страницы где упоминается термин Константа диссоциации комплекса фермент субстрат: [c.258]    [c.210]    [c.230]    [c.259]    [c.283]    [c.397]    [c.213]    [c.184]    [c.318]    [c.303]    [c.84]    [c.86]    [c.12]    [c.208]    [c.217]    [c.77]    [c.90]    [c.208]    [c.21]    [c.73]    [c.50]   
Ферменты Т.3 (1982) -- [ c.93 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация фермента

Комплексы диссоциация

Комплексы константы

Константа диссоциации

Константа ферментов

Субстрат

Фермент субстрат



© 2025 chem21.info Реклама на сайте