Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламя взрыва

    Огнепреградители. Для прекращения распространения пламени при горении или взрыве газов и паров в трубах или аппаратах применяют огнепреградители, действие которых основано на том, что струя горючей смеси газов или паров с воздухом, попадая в огнепреградитель, разбивается на большое число струек (принцип Дэви) с таким малым диаметром, что пламя взрыва и тем более пламя, образующееся при нормальном горении, по такой струйке распространяться не может. [c.523]


    При взрыве на людей могут воздействовать ударная волна, пламя, разлетающиеся осколки оборудования, коммуникации, конструкции зданий и сооружений, образующиеся или выходя- [c.19]

    Автоматическое прекращение работы установки. В ряде случаев специфика производства требует немедленного прекращения работы всей технологической схемы при возникновении взрыва в одном из аппаратов. Это обычно позволяет предотвратить еще более серьезные аварийные ситуации. Автоматическое прекращение работы технологической линии или отдельного аппарата достигается специальными устройствами, срабатывающими от индикатора взрыва это в некоторых случаях дает возможность выявить причину возникновения взрыва в технологическом оборудовании. Как правило, автоматическое прекращение работы установки применяется в различных вариантах с другими активными методами взрывозащиты. Например, в схеме взрывозащиты установки для измельчения пиритов наряду с защитой циклона предохранительными мембранами, срабатывающими от детонаторов, предусмотрена ее автоматическая остановка. Кроме того, пламя, возникающее в любом месте этой установки, гасится флегматизирующим веществом из быстродействующего огнетушителя, размещенного у входного отверстия вентилятора. При этом тушащее вещество эффективно циркулирует в системе до полной остановки вентиля- [c.178]

    Холодные пламена характеризуются очень длинными периодами индукции. Андреев [90] нашел, что в смесях и-бутан + Ог период индукции уменьшается экспоненциально с ростом температуры, изменяясь от 300 сек при 280° примерно до 2 сек при 400°. Период индукции между голубым пламенем и истинным взрывом увеличивается в пределах той же области температур от 0,2 до 2 сек. [c.417]

    На одном предприятии при очистке железнодорожной цистерны из-под сероуглерода остатки сливали в специальный сборник через канализационный трап по временному лотку, проложенному к цистерне. Вблизи лотка на расстоянии 2—3 м проходил открытый трубопровод для подвода пара к площадке, где вели очистные работы для пропарки цистерны после слива из нее остатков. Сливаемые остатки через неплотности в лотке просочились на землю и, растекаясь, достигли проходящего вблизи лотка паропровода. Произошла вспышка. Пламя распространилось по всей. поверхности разлитого продукта и по лотку, в который сливали остатки, достигло цистерны. Произошел взрыв газовоздушной смеси. [c.95]

    В производстве этилена произошел взрыв горючих газов. Комиссия установила, что первоначально разорвался линзовый компенсатор факельного трубопровода, а это привело к утечке газа и загазованности территории. Газовое облако, достигнув горящих форсунок печей пиролиза, воспламенилось, пламя распространилось в места с повышенной концентрацией газа, после чего последовал взрыв газовоздушной смеси. Анализ аварии позволил сделать следующие выводы  [c.206]


    Серьезную опасность при эксплуатации факельных систем представляет возможность отрыва пламени и погасание факела, так как в этих условиях большое количество взрывоопасных и токсичных газов будет выброшено в атмосферу. Взрывоопасные газы могут воспламениться от случайных источников поджигания и вызвать взрыв. Токсичные же газы при опускании на землю без воспламенения могут служить источником загрязнения атмосферы и интоксикации людей. Поэтому должны быть приняты эффективные меры, исключающие возможность как отрыва пламени факела, так и его погасание при сбросах горючих и токсичных газов. Пламя горелки будет устойчивым, если скорость истечения газа будет составлять 20—30% скорости звука. Диаметр горелки можно [c.226]

    Сложность заключается ен1,е в том, что если и удается затушить пламя, то вследствие испарения сжиженного газа его нары в виде газового облака в смеси с окружающим воздухом могут взорваться, причем такие взрывы сопровождаются большими разрушениями и пожарами. Осколки резервуаров при взрыве летят на расстояние до нескольких сотен метров, а при падении на здания, сооружения, аппараты и другие емкости могут вызвать новые разрушения и новые очаги пожара. [c.263]

    Пламя пожаро-взрывоопасных газов, вытекающих при аварии из технологического оборудования, разрешается сбивать азотом только на установках, расположенных на открытой площадке (вне производственных помещений). Для этой цели подведены специальные трубопроводы, которые постоянно заполнены азотом под давлением. Если оборудование расположено в производственных помещениях, тушить (сбивать) горящие газовые выбросы из него категорически запрещается, так как истечение газа при этом не прекращается и возможно образование взрывоопасных концентраций. Любой импульс воспламенения может вызвать взрыв газа и пожар во всем производственном помещения. [c.15]

    Для возникновения загорания и взрыва помимо горючей и взрывоопасной среды, как указывалось выше, необходим источник (импульс) воспламенения. Источниками воспламенения горючих газов и жидкостей при получении аммиака могут явиться открытое пламя, электрическая дуга и пламя горелок при электро- и газовой сварке, искры, вызываемые электрическим токо.ч и образующиеся при ударе и трении. Кроме того, пожары и взрывы могут возникать от статического электричества, первичных п вторичных проявлений молнии. [c.28]

    Обслуживающий персонал должен знать, что при истечении газов через неплотности в аппаратах и трубопроводах необходимо немедленно отключить поврежденные участки, чтобы предотвратить загорание и взрыв газа. В случае загорания газа, вытекающего в помещение через поврежденные трубопроводы и различного рода неплотности, запрещается сбивать пламя любыми средствами и способами, в том числе паром, двуокисью углерода, азотом и водой. [c.108]

    Особенно осторожным нужно быть при пользовании групповыми газовыми приборами или горелками. При зажигании их без соблюдения мер предосторожности может произойти легкий взрыв, газ вспыхивает, образуя большое пламя, которое может опалить работающего и даже вызвать пожар. [c.20]

    Если свинцовые аккумуляторы быстро зарядить от внешнего источника, то они могут стать довольно опасными на электродах при этом выделяется водород. Искра или пламя могут его поджечь, вызвав взрыв. [c.531]

    Если в процессе проведения огневых работ с выходом горючего газа пламя гаснет или газ начинает гореть внутри газопровода, то во избежание взрыва газо-воздушной смеси огневые работы должны быть прекращены и рабочие удалены нз котлОвана. [c.207]

    Распространение холодного пламени по рабочей смеси, в отличие от нормальных горячих пламен, осуществляется исключительно диффузией в свежую смесь активных частиц, радикалов, образующихся при распаде перекисей. Результатом холоднопламенной стадии является замена исходного, относительно инертного углеводорода химически активной смесью органических перекисей, альдегидов и свободных радикалов. Эта активная смесь подвергается дальнейшему окислению и после некоторого периода индукции происходит новый взрывной распад перекисных соединений, аналогичный прежнему, но с вовлечением большей массы исходной смеси и с участием большего количества перекисных соединений. При этом возникает особый тип пламени, промежуточный между холодным и горячим, названный А. С. Соколиком [27] вторичным холодным пламенем . Реакция идет в нем так же, как в холодном пламени, не до конечных продуктов СО2 и НаО, а до СО, но степень разогрева в этом пламени уже велика и соответствует выделению примерно половины полной энергии сгорания, поэтому вторичное холодное пламя распространяется с большей скоростью не только за счет диффузии активных центров, но и за счет теплопередачи. После прохождения вторичного холодного пламени остается нагретая до высокой температуры смесь СО и неиспользованного кислорода. При достаточно высокой концентрации активных центров происходит цепочечно-тепловой взрыв этой смеси, рождающий настоящее горячее пламя, т. е. происходит самовоспламенение [27]. [c.67]


    Если поместить одинаковые количества газообразных водорода и кислорода в сосуд и внести в него пламя или платиновый катализатор, произойдет сильный взрыв. Исходные газы Нз и исчезнут, а вместо них образуется водяной пар. Аналогично смесь газообразных Hj и lj при инициировании светом взрывает с образованием газообразного НС1. В отличие от этого смесь газов Н и N2 реагирует намного медленнее, и конечным продуктом этой реакции является смесь газов Н2, N2 и NH3. [c.51]

    Диагностика процессов Модельные пламена, взрывы ТЬердотельные на кра- [c.210]

    ЭЛЬБЕ Г юнтер работал в лаборатории исследований угля Технологического института Карнеджи в Питтсбурге, где совместно с Льюисом Б. изучал термодинамические свойстзй газов пламени, скорость пламени и кинетику га-зовых реакций. В 1938 г. совместно с Льюисом Б. выпустил книгу Г орение. пламя, взрывы в газах.  [c.113]

    Очень распространено мнение, что сила вэрыва под водою будто бы больше, чем при таких же условиях на открытом воздухе. Вследствие того, что плотность воды приблизительно в 770 раз больше плотности воздуха, вода, окружая взрывчатое вещество, представляет как бы идеальную забойку, безусловно концентрирующую силу взрыва на подрываемом предмете. Поэтому разрушительная пробивная сила мин и торпед может якобы проявиться только под поверхностью воды. Наряду с этим существует обоснованное противоположное мнение, что пламя взрыва частично гасится холодною водою и сила взрыва соответственно этому уменьшается и парализуется. Как мы увидим, каждый из этих взглядов соответствует или не соответствует действительности, в зависимости от того, как произведен взрыв под водою. [c.570]

    Особенностью некоторых нефтепродуктов является их способность к образованию тепловой волны (прогретого слоя) при поверхностном горении в резервуарах. В случае горения нефтепродуктов с узкой областью выкипания тепло пожара проникает только в тонкий поверхностный слой. При горении сырых нефтей и жидких углеводородов с широкой областью выкипания низкокнпящие фракции углеводородов уходят с поверхностей и подпитывают пламя, а высококипящие углеводороды устремляются вниз через прогретый слой, образуя нагретый фронт более глубоко расположенных слоев жидких углеводородов. Это явление называют тепловой волной. Тепловая волна растет вследствие подвода тепла и ухода паров, пока не выкипят все более легкие углеводороды или пока она не достигнет водяного или эмульсионного слоя. В последнем случае возникает паровой взрыв с выбросом горящего продукта. [c.143]

    На одном из отечественных предприятий также произошел взрыв мокрого газгольдера во время разборки. До этого газгольдер длительное время не эксплуатировался. До начала работ газгольдер решено было продуть свежим воздухом. В момецт продувки, когда колокол был поднят, произошел взрыв небольшой силы, из-под колокола показалось пламя. Силой взрыва колокол приподняло вверх, но он остался в вертикальных направляющих и снова опустился в резервуар (бассейн). После взрыва рабочие приступили к разборке газгольдера. При рубке заклепок внутри газгольдера произошел новый взрыв. Как было установлено, причина первоначального взрыва — накопление в газгольдере сернистых соединений, обладающих способностью самовозгораться на воздухе. Импульсом второго взрыва послужили искры, высеченные при рубке заклепок. [c.229]

    Причиной многих аварий во взрывоопасных производствах является открытое пламя. Для исключения-этого источника импульса взрывов на предприятиях проводят целый ряд мероприятий. На всех взрыво- и пожароопасных объектах запрещено курение. Во всех цехах определяются места курения, которые оборудованы необходимыми средствами предупреждения загорания и ликвидации очагов огня. Не допускается применение открытого огня для подогрева легко воспламеняющихся жидкостей и газов. Для обогрева оборудования пользуются горячей водой, паром, закрытым электронагревом. Источники открытого огня (печи пиролиза, элек-трогазосварочные площадки и др.) располагают на безопасном расстоянии от взрывоопасных цехов и участков. [c.345]

    Взрыв произошел на установке производительностью 70 тыс. т капролактама в год в отделении окисления циклогексана воздухом. По мощности взрыв был эквивалентен заряду 45 т тринитротолуола. Взрывом были полностью разрушены здания лаборатории и заводоуправления, склад капролактама. Электрическая подстанция, трубопро Воды и резервуары с легковоспламеняющимися жидкостями. Огонь охватил площадь 180X250 м. Пламя достигло высоты 100 м возникли локальные пожары. Были выведены из строя насосная станция и все пожарное оборудование, оборвалась линия электропередачи. Главная про- тивопожарная магистраль была разорвана в нескольких местах. Снринклерная система на складе капролактама оказалась полностью выведенной из строя загорелся природный газ, поступающий из разорванных магистралей. Завод был охвачен пламенем в течение нескольких часов. [c.96]

    Комиссия, расследовавшая аварию, пришла к выводу, что взрыв был вызван попаданием воздуха в факельный трубопровод. Полагают, что подсос воздуха пронзошел нз атмосферы через ствол факела или при нарушении целостности факельного трубопровода. Импульсом воспламенения послужило пламя факельной горелки, проникшее во внутрь факельного трубопровода через предохранитель обратного пламени. Взрывоопасная смесь в этом случае могла образоваться в результате создания вакуума при охлаждении этилена, сброшенного из первой технологической линни с температурой около 200 °С в количестве 6800 м . Экспертами было показано, что при таких условиях внутрь трубопровода могло быть затянуто 260 м газовоздушной смеси. Точно установить количество затянутого воздуха не представлялось возможным, так как количество метано-водородной фракции, подаваемой в молекулярный затвор в качестве подпорного газа, не замерялось. При условии же подачи метано-водородной фракции в количестве, предусмотренном проектом (20 м /ч), в факельный трубопровод могло попасть 200 м воздуха и 60 м метано-водородной смеси. [c.207]

    Воспламенение смеси пыли с воздухом является одним из важных свойств горючих пылей она определяет способность их распространять пламя по всему объему взвешенной пыли в воздухе при определенной минимальной концентрации этой пыли. Под давлением, возникающим при самовоспламенении смеси пыли с воздухом, в воздух поднимается столько пыли, осевшей вблизи места воспламенения, что взрыв может распространиться далеко за пределы очага возникновения вспышки. Для ограничения силы взрыва принимают соответствующие меры, о которых будет сказано ниже. [c.262]

    При взрыве бьита обрушено здание (рис. ХП-5) и выведено из строя технологическое оборудование. Причиной загорания явилось возникновение огня ( жучка ) во второй паре жерновых мельниц ао время пуска (поджатия камней), что привело к аоопламенеяию продукта а течке н ковшевом элеваторе. Затем пламя распространилось через вентиляцию во все просевающие аппараты и фильтр-мешок, вызвав взрыв в них пылевоздушеой смеси. Мембраны взрывных клапанов аппаратов были разрушены. На этом предприятии в течение семи лет эксплуатации было зафиксировано 68 загораний и взрывов. В 47 случаях источником огня явились жерновые мельницы, в 14 случаях мельницы ударного типа и семь случаев произошло по другим причинам. [c.270]

    Выброс углеводородов произошел внезапно, через 30 с последовал первый взрыв с сильным звуковым эффектом и через 2—3 мин — второй, более глухой взрыв, после которого поднялось высоко клубящееся пламя. Масштабы разру- [c.317]

    В Дортмунде (ФРГ) на установке разделения воздуха, принадлежащей фирме Кнаизак-Грисхайм , произошел сильный взрыв, в результате которого погибли 13 человек и 15 человек были серьезно ранены. Установка типа Линде-Френкль была построена фирмой Линде . На установке получали 50— 57 мУмин технического кислорода чистотой 92—99%, 3,3 м мин газообразного кислорода чистотой 99,5% и 3,3 м мин жидкого кислорода чистотой 99,5%. Вся аппаратура была изолирована шлаковатой. Оборудование холодного блока было установлено на плите нз сосновых досок, покрытых оцинкованным железом, тщательно подогнанным и заделанным по краям. За пять дней до аварии агрегат подвергся техническому осмотру, после чего установка была пущена по обычной схеме. Вскоре после пуска была обнаружена течь в нижней части азотных регенераторов. Открыв один из люков холодного блока и временно. удалив часть изоляции (шлаковаты) для доступа к фланцу работники цеха устранили течь. Однако яоказатели работы агрегата не соответствовали требуемым. Агрегат вновь был остановлен. Проверка показала дефект в поршневых кольцах третьей ступени. После замены колец выработку кислорода возобновили, и мощность установки достигла нормального уровня. Через некоторое время обнаружилась течь в зоне кислородных регенераторов. Ко времени взрыва ремонтные работы, связанные с этой течью, еще не были закончены и в цехе находился обслуживающий персонал. Незадолго до взрыва загорелась уплотняющая прокладка в нижней части кожуха холодного блока. Была сделана попытка потушить пламя ручными огнетушителями, ио в это время произошел сильный взрыв. [c.375]

    Приведенные в таблице результаты характерны для явления двухстадийного самовоспламенения с двумя отдельными индукционными периодами, которые мы обозначим и Индукционный период (от начала реакции до появления холодного пламени) примерно равен8,2 сек., а индукционный период Та (от появления холодного пламени до наступления взрыва) равен приблизительно 1,01 сек. Мы обозначим эти понятия как период и период Тз. Первый период заканчивается появлением холодного пламени, а второй — появлением горячего пламени, если давление и температура выше критических. В период т , весьма вероятно, имеют место реакции разветвления цепи, а холодные пламена являются по своей природе взрывами, происходящими в результате такого разветвления [18] с той разницей, что взрывная реакция прекращается до выделения боль шей части запаса энтальпии в системе. В период Та происходят реакции химически измененной остаточной смеси после прекращения реакций разветвления цепи. На низкотемпературной стороне полуострова холодного пламени (рис. 2) вся реакция до наступления взрыва происходит почти полностью в период Т1 и в соответствии с кинетическими данными Преттра, Айвазова и Неймана является самоускоряющейся. На высокотемпературной стороне полуострова холодного пламени период развит слабо, и согласно данным Норриша и Ри [33] обычно реакция вне области взрыва подобна реакциям метана. [c.252]

    Скорости истечения метано-кислородной смеси следует выбирать таким образом, чтобы избежать возможности отрыва пламени, это особенно важно при малы> диаметрах отверстий в горелке. Так, скорости тушения для смеси метана е кислородом составляют от К до 30 ж/се/с при диаметрах 1—20 м.м.. Поскольку реаль ные скорости истечения (см. выше) значительно пре восходят скорости тушения , применяется стабилиза ция пламени подачей дополнительного количества кис лорода к корню факела. Плохая стабилизация пламен приводит к серьезным авариям при отрыве пламя мо жет погаснуть и несгоревшая взрывоопасная метано кислородная смесь, заполнившая аппаратуру и комму никац ии, явится источником взрыва. [c.56]

    В лабораторной нефтяной практике не привилось определение верхней и нижней температуры вспышки. Когда пары над жидкостью содержат слишком много горючих составных частей, вспышка происходит без взрыва, и пламя передается самой жидкости. Эта температура соответствует верхней температуре вспышки. Наоборот, когда в смеси много воздуха и мало горючих паров, теплота, распределяясь Б массе инертных газов, оказыва.зтся недостаточной для вооп,тменения самой жидкости. Это нижняя температура вспышки. Для бензинов разница может достигать 30°, но для масел она меньше. Очевидно, что верхний нредел температуры вспышки практически совпадает с температурой воспламенения, если скорость воспламенения масла достаточно велика, чтобы компенсировать потерю горючих наров, сожженных в угсловиях нижней температуры вспышки. Это вообще- [c.130]


Библиография для Пламя взрыва: [c.103]    [c.411]    [c.310]   
Смотреть страницы где упоминается термин Пламя взрыва: [c.229]    [c.229]    [c.49]    [c.34]    [c.411]    [c.84]    [c.222]    [c.274]    [c.152]    [c.496]    [c.496]    [c.496]   
Пороха и взрывчатые вещества (1936) -- [ c.39 , c.46 , c.135 , c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв



© 2025 chem21.info Реклама на сайте