Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кон ката меры

    Следует отметить специфичность действия катализаторов — каждая реакция ускоряется какими-то определенными катализаторами и не ускоряется другими и, наоборот, каждый катализатор ускоряет какие-то определенные реакции и ие ускоряет других. Это дает возможность, применяя разные катализаторы, получать различные продукты из одних и тех же исходных веществ. Далее, следует отметить, что катализатор в равной мере ускоряет как прямую, так и соответствующую ей обратную реакцию. Это значит, что катализатор никак ие влияет на состояние химического равновесия, не сдвигает его. Роль катализатора, по существу, сводится к тому, что он ускоряет наступление состояния равновесия. Естественно, что практическое использование катаЛ иза целесообразно в тех случаях, когда стремятся именно к достижению состояния равновесия в реакционной системе. [c.96]


    На практике для каталитических реакций, в которых предэкспоненциальный множитель ко в уравнении (IV. 27) не изменяется по сравнению с некаталитическими, мерой активности катализатора может служить соотношение констант скоростей каталитической кат и некаталитической к реакций [c.108]

    Анализируя гиперболическую кривую отравления (рис. 18), можно заключить, что характер отравления меняется по мере увеличения количества поданного на ката- лизатор яда [35, 38, 41]. [c.64]

    Несмотря на односторонность и ограниченность физических и химических теорий, они были прогрессивны в той мере, в какой отражали действительность. Физические теории стимулировали изучение роли адсорбции в катализе и привели к важным выводам о зависимости скорости и даже направления каталитических реакций от величины и структуры поверхности катализаторов. Химические теории, указывая на наиболее принципиальную сторону катали- [c.125]

    Перевод графита в алмаз может быть осуществлен только при очень высоких давлениях (рис. Х-1). С другой стороны, он достаточно быстро Протекает лишь при высоких температурах и наличии катализаторов, из которых наиболее подходящими оказались некоторые элементы триад (рис. Х-8). Зародышевые кристаллы алмаза возникают на поверхности раздела между графитом и расплавленным металлом-кат-ализа-тором. Они остаются покрытыми пленкой жидкого углеродсодержащего металла, сквозь которую углерод затем и диффундирует от графита к алмазу по мере его роста. Современная техника позволяет получать в одной камере за несколько минут более 20 г алмазов. [c.501]

    В какой-то мере, следовательно, электрохимические реакции приближаются к процессам гетерогенного ката- [c.16]

    Сравнение темпа дезактивации узкопористого и широкопористого катализаторов показывает, что широкопористый каталюатор в процессе переработки остаточного сырья дезактивируется значительно медленнее. Изучалось изменение фактора проницаемости этих катализаторов по мере отработки (рис. 3.40). Фактор проницаемости узкопористого катали- [c.137]

    Гидрогенолиз циклопентана исследован [243] в интервале температур 125—330 °С на серии металлических катализаторов VIII группы, а также на Ре/АЬОз и Си/МгОа. Исследование проводилось на образцах катализаторов, содержащих 0,05, 0,2, 1,0 и 5,0% Р1, 1% Рс1, 0,075% №, 1 и 10% №, 5, 10 и 20% Со, 10% Си, 1% Ре, а также по 0,1% Ки, Оз и 1г. В присутствии Р1- и Рс1-ка-тализаторов гидрогенолиз циклопентана протекает селективно с образованием только к-пентана Рс1 малоактивен и быстро отравляется, Ре- и Си-катализаторы неактивны даже при 450 °С. В присутствии КЬ- и 1г-катализаторов при температурах ниже 200 °С также образуется только м-пентан при повыщении температуры увеличивался выход алканов состава 1—С4. На Со-, N1-, Ни- и Оз-катали-заторах гидрогенолиз циклопентана протекает во всем исследуемом интервале температур с высоким выходом низкомолекулярных углеводородов. При повышении температуры выход низших углеводородов на N1 и Со уменьшается, а на Ни, Оз, КЬ и 1г —возрастает. Отмечают, что на КЬ и 1г энергия активации образования вторичных продуктов гидрогенолиза несколько выше энергии активации реакции образования я-пентана из циклопентана. С целью выяснения пути образования низкомолекулярных углеводородов — непосредственно из циклопентана или в результате вторичных реакций -пентана — исследован гидрогенолиз циклопентана в присутствии (1% Ы1)/Л120а при различных временах контакта. Установлено, что в начальный момент образуется только н-пентан, а по мере увеличения времени контакта накапливаются низшие углеводороды. Анализ кинетических кривых привел к выводу [243], что на указанном катализаторе при малых временах контакта углеводороды состава С1—С4 образуются вместе с н-пентаном непосредственно из циклопентана. При увеличении времени контакта первичные продукты реакции подвергаются дальнейшему гидрогенолизу. [c.167]


    В интервале молекулярных весов, соответствующем смазочным маслам, можно пользоваться удельной дисперсией как мерой наличия или отсут-СТ1ШЯ ароматических колец. Значения удс льной дисперсии менео 100 обычно признаются кат доказательство того, что образец не содержит ароматических углеводородов. Более чувствительным методом обнаружения Ш1зких концентраций ароматических углеводородов является поглощение в ультрафиолетовой части спектра. Примеры применения удельной дисперсии см. у Россини 172], Рэмптона [701 и Гудингса [25]. [c.264]

    В первом (основном) периоде сушки усадка адсорбента-катали-затора пропорциональна количеству испаряющейся влаги. Это значит, что стенки пор сохраняют эластичность. Процесс испарения протекает свободно — примерно так же, как из капли воды (влага двпжстся в порах шариков к поверхности). Относительная усадка шариков возрастает с каждым килограммом удаляемой воды. После удаления 65—80% воды сушка и абсолютная усадка замедляются. В то же время относите.тьная усадка шарика на единицу количества удаляемой влаги в этот период наибольшая. Внутри шарика за счет испарения воды и молекул вытеснителя появляются свободные поры, шарики становятся мутными. В этот момент возникают внутренние напряжения, вызываемые капиллярными силами воды, передвигающейся из очень тонких пор. Под действием этих напряжений шарики могут растрескаться, поэтому быстрая сушка в этот период опасна. По мере дальнейшего испарения воды в шариках становится все больше пор. Растрескивание шариков может быть вызвано не только неправильным режимом сушки здесь обычно проявляются все недостатки предшествующих операций (смешения растворов, колебания pH золя, недостаточной промывки и т. д.). Чем более неоднородна структура катализатора-адсорбента, тем выше возникающие напряжения и тем больше он растрескивается. [c.125]

    Большинство процессов отравления необратимы, поэтому катализатор в конечном счете выгружают из-за потери им активности. Существует, однако, один практически важный тип процессов отравления, который обратим. Так, например, обратимо отравление алюмоплатиновых, цеолитсодержащих и алюмоникел1>молибденовых катах[изато-ров при обработке их кислородом. Чтобы не допускать отраЕления катализатора, ь принципе всегда можно удалить яд из сырья путем его тщательной очистки или использования форконтакта. Однако стоимость такой очистки может оказаться весьма высокой. Напри)мер, в процессе метанирования на никелевых катализаторах сырье необходимо очищать до содержания в нем сернистых соединений ниже [c.92]

    Образцы, содержащие кобальт, молибден, хром, ванадий и свинец, близки по характеру коксоотложений по сечению частицы к исходному алюмосиликатному катализатору, особенно при малых концентрациях металлов. Так, при содержании в образцах 0,8 вес. % хрома отношение содержания кокса на периферии и в центре шарика составляет 1,85, а при содержании 0,06—0,10 вес. % хрома кривая распределения кокса близка к кривой исходного катализатора (см. рис. 71). Такую разницу в распределении кокса по сечению частицы катализаторов, содержащих различные металлы, можно объяснить их различным влиянием на коксообразование. При добавлении к катализатору щелочных и щелочноземельных металлов кислотность катализатора и его активность понижаются. Из-за большего отложения металла в поверхностных слоях ката-, литическая активность периферийных слоев катализатора снижа-. ется больше, в то время как центральные слои сохраняют более высокую каталитическую активность. Это приводит к перемещению реакций крекинга в глубину частицы катализатора с одновременным отложением кокса в центральных слоях частиц. Поэтому кокс отлагается более равномерно по сечению шарика на образцах, содержащих щелочные и щелочноземельные металлы, чем на исходном катализаторе. Тяжелые же металлы не оказывают влияния на кислотность катализатора. Накапливаясь главным образом в периферийных слоях частицы. Поэтому кокс откладывается на этих образцах большей частью в периферийных слоях частицы катализатора, т. е. крайне неравномерно. По мере увеличения содержания в катализаторе металлов неравномерность отложения кокса возрастает. Металлы, увеличивающие коксообразование, [c.165]

    В реакторе смась охлаждается по мере про хождении через кат ,лиза-тор. Реакторы подобного типа называют адиабатическими. [c.218]

    Сернокислотной гидратацией -бутнлеиов моишо получить етор-бутило-Ш.1Й спирт (бутаиол-2), который в первую очередь используют для производства метилэтилкетона. Чтобы избе кать значительного образования полимеров ири гидратации, следует строго соблюдать определенные меры пред- [c.465]

    Повышение температуры регенерации цеолитов при введении катали-затэра окисления десорбируемых органических примесей позволяет улучшить условия работы десорбера и последующего реактора тepмoкaтaJШ-тической очистки газов десорбции, так как часть органических примесей сгорает уже в десорбере, и снизить на величину среднего температурного градиента температуру воздуха, подаваемого в десорбер на стадии регенерации адсорбента. Как показали расчеты, при регенерации цеолитов КаХ в процессе деароматизации жидких парафинов при среднем термокаталитическом градиенте, равном 50°С, экономическая эффективность от введения катализатора АП-56 в шихту в количестве 0% масс благодаря снижению энергозатрат на процесс десорбции составляет 6,47 руб. на 1 руб. затрат на катализатор. Замена катализатора АП-56 на более дешевые оксидные, например СТК-1-7, позволит в еще большей мере повысить эффективность регенерации цеолитов. [c.116]


    Для производства те-тра.мера пропилеиа необходимо следующее оборудование сырьевые емкости, сырьевой насос, камерный реактор с катали- [c.248]

    Поскольку при изучепи-и кинетики ферментативного гидролиза экспериментально определяемыми величинами обычно являются константа Михаэлиса Кт, каталитическая константа кат и валовая константа скорости второго порядка йкат Кт, следует выяснить, как эти величины связаны с микроскопическивди —константами ассоциации фермента и субстрата. Ясно, что константа Михаэлиса (точнее, ее обратная величина, поскольку константа Михаэлиса традиционно записывается как константа диссоциации) в простом случае (и в предположении аддитивности) представляет собой просто сумму констант ассоциации я-мера с активным центром и его отдельными участками (сайтами) в / позициях  [c.41]

    Рассмотренные выше случаи взаимодействия сухого фтористого водорода с оксидами металлов и металлоидов могут служить типичным примером ауто-кат алшаческих реакций, т.е. таких процессов, при которых катализатор (в данном случае —вода) не вводится в систему извне, а является одним из продуктов реакции. Как показывает рис. VH-I, скорость подобных процессов сначала, по мере увеличения в системе количества катализатора, нарастает до некоторого максимума, после чего начинает уменьшаться вследствие понижения коицситра-ций реагирующих вен ,еств. [c.190]

    Меры предосторожности при выполнении реакций конденсации >пределяются используемой методикой, природой реагентов, ката- Гйзаторов и продуктов реакции и правилами работы в лаборатории органического синтеза, [c.249]


Смотреть страницы где упоминается термин Кон ката меры: [c.171]    [c.165]    [c.171]    [c.346]    [c.204]    [c.103]    [c.282]    [c.322]    [c.187]    [c.172]    [c.331]    [c.471]    [c.132]    [c.7]    [c.218]    [c.246]    [c.600]    [c.693]    [c.203]    [c.362]    [c.119]    [c.221]    [c.65]    [c.237]    [c.59]    [c.315]    [c.492]    [c.210]    [c.86]    [c.163]    [c.55]   
Биохимия Т.3 Изд.2 (1985) -- [ c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Катам



© 2025 chem21.info Реклама на сайте