Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическое дегидрирование пропана

    Термическое дегидрирование высших парафиновых углеводородов, как пропан или бутаны, с образованием олефипов, имеющих равное с исходным углеводородом число атомов С, или вообще невозможно или протекает с очень малыми выходами, так как сопровождается обычно крекингом. Однако возможно дегидрирование каталитическим путем — пропусканием сырья над смешанным катализатором (окись хрома — окись алюминия) при температуре около 500°. [c.35]


    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]

    Углеводородные газы различных источников, главнейшими из которых являются природные и попутные нефтяные газы, а также газы нефтепереработки, служащие в настоящее вре.мя основным нефтехимическим сырьем для производства полимеров, относятся к различным гомологическим рядам а) парафинов — метан, этан, пропан, бутан и пентан углеводороды этой группы встречаются в природном и попутном нефтяном газе, а также образуются при термических и каталитический процессах переработки нефти, угля и других горючих ископаемых б) олефинов — этилен, пропилен, бутилен, образующиеся при термических и каталитических процессах переработки нефти, а также при пиролизе и дегидрировании углеводородных газов группы парафинов в) диолефинов — главными представителями этого ряда, имеющими большое практическое значение, являются бутадиен и изопрен наиболее экономично получение их при дегидрировании углеводородов группы а и б г) ацетилена — получают крекингом или пиролизом углеводородов парафинового ряда. [c.8]

    Как было указано выше, из газообразных парафиновых углеводородов термическому дегидрированию без применения катализатора при определенных условиях можно подвергать лишь этан с получением соответствующего олефина-этилена. Уже следующий углеводород — пропан реагирует в двух направлениях параллельно с реакцией дегидрирования в пропилен, протекает также реакция распада углеводородной цепи с образованием этилена и метана, причем вторая реакция преобладает. В аналогичных условиях н-бутан, н-пентан и изопентан реагируют, главным образом, с распадом углеводородной цепи и образованием более иизкомолекулярных олефинов. Термическое дегидрирование в соответствующие олефины без распада углеводородной цепи имеет лишь подчиненное значение. Из углеводородов этого ряда, сравнительно устойчив к термическому распаду также и изобутан, который может термически дегидрироваться в изобутилен. При этом, конечно, имеет место также и распад на пропилен и метап, но в отличие от н-бутана значительное количество изобутана (около 60% мол.) превращается в изобутилен. Ус- [c.62]


    Этан-пропан. Несмотря на то что этилен можно приготовить пиролизом любого углеводородного сырья, этап, пропан, и смеси этих двух компонентов рассматриваются как наиболее приемлемые исходные продукты. Процесс строго термический, так как пе обнаружено катализатора, способного эффективно увеличивать скорость дегидрирования этана или дифференциально воздействовать на две стороны разложения пропана — дегидрирование и деметилирование. Пиролиз ведется при температуре около 730—815 С и под давлением 1,4—2,1 кГ1см время контакта — около 0,7—1,3 сек. Для уменьшения конденсационных реакций и одновременно — подвода тепла в зону реакции добавляют инертный разбавитель, такой как водяной пар. В табл. П-12 приведены типичные продукты подобного превращения. [c.99]

    При термическом крекинге при дегидрировании пропан-этановых смесей всегда образуется небольшое количество бензина который отводят из нижней части промывной колонны. Полученную предварительно смесь изобутапа и этилена сжимают до 300 ат и вводят в реакционный змеевик, где она находится 2—3 мин. Затем смесь продуктов реакции разгоняют под давлением. Избыточный изобутан возвращают в процесс, а смесь этана и пропана направляют в печь пиролиза для получения этилена. Метана образуется при реакции мало. Жидкие продукты алкилирования поступают на ректификационную установку, где отделяется неогексан. Из всех гексанов, которые могут образоваться при алкилировании, он имеет самую низкую температуру кипения. Практически изобутан всегда содержит некоторое количество к-бутана, подвергающегося в процессе реакции изомеризации, правда, в ограниченном размере. Температуры кипения жидких углеводородов, которые образуются в качестве побочных продуктов при получении неогексана, таковы (в °С)  [c.316]

    Этан и пропан дегидрируют в трубчатых печах (стр. 46) чисто термически. При дегидрировании бутана и высших парафинов применяют катализаторы—окислы некоторых металлов (окись хрома и др.). [c.141]

    Олефины образуются при термических и каталитических процессах переработки горючих ископаемых, главным образом пефти, а также при пиролизе и дегидрировании углеводородных газов (метан, этан, пропан, бутаны, пентаны). [c.393]

    В процессах каталитического дегидрирования углеводородов С4 наряду с основными реакциями протекает ряд побочных термическое и каталитическое разложение исходных и конечных продуктов в легкие газы (водород, метан, этан, этилен, пропан, пропилен), димеризация и полимеризация олефинов и диенов к последующее частичное разложение образовавшихся тяжелых продуктов на легкие газы и кокс. Возможна также изомеризация. [c.61]

    Перечисленные виды сырья конечно неравнозначны по своим потенциальным возможностям. Такие углеводороды, как этан, пропан, бутан, изопентан, этилбензол, являются в основном источником для получения высокоактивных непредельных углеводородов. Методами термического пиролиза и каталитического дегидрирования они перерабатываются соответственно в этилен, пропилен, бутилены, дивинил, изопрен, стирол.  [c.276]

    В промышленности неогексан (важнейший компонент авиационных бензинов) производят следующим способом. На изобутаи дейстгуют этиленом (оптимальное соотношение 9 1) при 500° и 300 ат. Вследствие большого избытка изобутана термическая полимеризация этилена, а следовательно, и образование смол происходит в небольшой степени. Необходимое количество этилена получают на той же самой установке пиролизом пропана, бутана или их смесей, а также термическим дегидрированием этана. Обычно для производства этилена используют только этап и пропан, таг как бутан является сырьем для получения более деннг,гх продуктов. [c.315]

    Низшие парафины — этан, пропан, изобутан — при термическом дегидрировании образуют этилен, пропилен и изобутилен, используемые в промышленности для различных синтезов. Каталитическое дегидрирование высших нормальных парафинов является эффективным способом промышленного производства высших (линейных) олефинов (Сц—С1в), что имеет большое значение для получения биоразлагаемых синтетических моющих средств. [c.130]

    В описываемой установке газы нефтепереработки разделяют компрес-сионно-абсорбционным методом на фракции Сг и Сз. Пропан-пропиленовую фракцию затем подвергают пиролизу в особой печи, режим которой приспособлен именно к этому сырью. Жидкую фракцию Са разгоняют под давлением на этан и этилен. Этилен является конечным продуктом. Этан подвергают пиролизу в печи, которая работает в условиях, оптимальных для термического дегидрирования этана в этилен и несколько отличающихся по времени пребывания газа в нагретой зоне и по температуре от режима, [c.172]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]


    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    При получении изопрена дегидрированием помимо изопентана используются пентаны, образующиеся при термическом или каталитическом крекинге нефтяных продуктов. В качестве катализаторов применяют алюмохромокалиевые соединения, близкие по составу к катализаторам для дегидрирования н-бутана. Состав конечных продуктов реакции значительно сложнее, чем при дегидрировании н-бутана. Кроме изопрена образуются предельные углеводороды (метан, этан, пропан и н-пентан), а также различные MOHO- и диолефины (этилен, пропилен, бутилены, н-пентаны, пиперилен), что осложняет процесс выделения чистого изопрена, несмотря на кажущуюся простоту уравнения реакции. [c.205]

    За последние несколько лет газофазное окисление насыщенных углеводородов привело к разработке отечественных полупромышленных и промышленных методов нолучения олефиновых и диеновых углеводородов. К таким процессам прежде всего необходимо отнести процесс окислительного пиролиза насыщенных углеводородов, суть которого состоит в такой термической переработке углеводородного сырья с применением кислорода, при которой часть его сгорает, высвобождая и компенсируя таким образом тепло, необходимое для пиролиза и частичного дегидрирования алканов в соответствующие низшие олефины. Бензины, промышленные пропан-бутановые и другие нефтяные фракции являются при этом сырьем, а этилен дг пропилен—преимущественно целевыми продуктами. Работы К. ] . Дубровая, С. Ф. Васильева, А. М. Мосина и И. А. Лапидес [395—397] посвящены лабораторной и промышленной разработке названного процесса. [c.83]


Смотреть страницы где упоминается термин Термическое дегидрирование пропана: [c.52]    [c.60]    [c.12]    [c.357]   
Смотреть главы в:

Химия и технология пропилена -> Термическое дегидрирование пропана




ПОИСК





Смотрите так же термины и статьи:

Дегидрирование термическое

Пропан

Пропан дегидрирование

Пропанои



© 2024 chem21.info Реклама на сайте