Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрирование термическое

    Термическое дегидрирование высших парафиновых углеводородов, как пропан или бутаны, с образованием олефипов, имеющих равное с исходным углеводородом число атомов С, или вообще невозможно или протекает с очень малыми выходами, так как сопровождается обычно крекингом. Однако возможно дегидрирование каталитическим путем — пропусканием сырья над смешанным катализатором (окись хрома — окись алюминия) при температуре около 500°. [c.35]


    Циклопентан относительно термически стабилен он не подвергается дегидрированию нри нормальных температурах крекинга, а при более жестких условиях углерод-углеродная связь расщепляется с разрывом кольца [50—53]. Циклогексан начинает разлагаться при 490—510° С, образуя большие количества водорода, этилена, бутадиена [54], бензола [55] пропилен не получается [56]. Циклогексен, по-видимому, является промежуточным продуктом, из которого затем образуются бензол и водород или бутадиен и этилен [55]. Последний вариант реакции протекает почти количественно при 800° С [56] в продуктах реакции почти нацело отсутствует циклогексадиен [57]. Нет доказательств и в пользу предположения о возможности изомеризации циклогексана в метилциклопентан при термическом крекинге [56]. [c.301]

    Реакция (V) дегидрирования циклогексана в бензол в условиях термического крекинга может протекать до конца (см. стр, 273—275). [c.286]

    Примером адиабатических систем являются реакционные камеры процессов термического крекинга деструктивной гидрогенизации, каталитического крекинга с движущимся катализатором, прямой гидратации этилена, дегидрирования бутиленов и др. [c.263]

    Отдельные элементарные процессы практически удалось осуществить [8—11] без катализаторов (термическое алкилирование, термополимеризацию, термическое дегидрирование, термическое деалкилирование, различные формы термического распада) и с ними (алкилирование на холоду парафиновых и ароматических углеводородов олефиновыми, полимеризацию, в том числе димеризацию и сополимеризацию, гидрирование, низкотемпературный крекинг, изомеризацию и т. п.). Но чисто термические процессы требуют высоких температур (термический синтез ароматических углеводородов) либо высоких давлений (термическая полимеризация, алкилирование и гидрирование) и в указанных условиях сопровождаются значительными потерями исходного сырья за счет глубоко идущих реакций распада (вплоть до распада на элементы) и глубокого уплотнения (до образования коксообразных веществ). [c.42]

    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]


    Кроме получения олефинов термическим дегидрированием этана и крекингом, вернее каталитическим дегидрированием пропана и бутана, возможен еще пиролиз высокомолекулярных углеводородов, таких как тяжелый бензин и газойли. Этот пиролиз протекает со значительным образованием кокса. Чтобы уменьшить затруднения, связанные с образованием кокса, имеются три пути  [c.35]

    В промышленном масштабе осущ,ествляется только термическое дегидрирование этана и изобутана, которое приводит к получению соответственно этилена и изобутилена. [c.11]

    Термическое дегидрирование пропана [c.11]

    Обширные исследования чисто термического дегидрирования пропана, проведенные Фреем и сотрудниками [40, 41], полностью подтвердили приведенные данные. Ниже сопоставлены полученные ими результаты по составу газов (в вес. %) при опытах в кварцевых трубках при 575 °С, нормальном давлении и различном времени контакта  [c.12]

    При промышленных масштабах проведения термического дегидрирования (крекинге) пропана в этилен выход пропилена можно повысить путем изменения условий реакции до соотношения этилен пропилен = 1 1. [c.12]

    СВЯЗИ С—Н (87,3 ккал/моль). Эффективный катализатор существенно ускоряет процесс дегидрирования. При этом количество нежелательных побочных продуктов становится незначительным, так как побочные реакции протекают медленнее. Ниже приводятся условия процесса и состав продуктов, получаемых при каталитическом (I) и термическом (П) дегидрировании пропана  [c.13]

    Остаток ИЗ первой (бензольно-толуольной колонны) поступает в первую-этилбензольную колонну, где при остаточном давлении 35 мм отделяется этилбензол (с примесью около 1% стирола), возвращаемый па установку дегидрирования. Остаток первой этилбензольной колонны поступает на вторую колонну, в которой от стирола отделяются носледние остатки этилбензола. Остаток из второй этилбензольной колонны поступает далее в периодически работающую при 35 мм колонну тонкой ректификации. Чистый стирол отходит при температуре верха колонны 57 , температура низа колонны 74°. В эту колонну сверху поступает стабилизирующий раствор в виде гидрохинона или ге-т/)ет-бутилпирокатехипа. Благодаря этому термическая полимеризация стирола полностью предотвращается. Эти ингибиторы применяются также для стабилизации стирола в условиях хранения. Необходимая концентрация составляет 10 частей ингибитора на 1 млн. частей стирола. [c.238]

    Термическое дегидрирование изобутана [57] также осуществлено в промышленных масштабах. В этом процессе наряду с 50% изобутилена получается 25% пропилена (конверсия 2 30%, температура 650—730 °С, давление 5,2—6,6 кгс/см ). При температуре реакции 600—650 °С получают даже 63 мол. % изобутилена и 34,5—36 мол. % пропилена [53, 58]. [c.15]

    Дегидрирование бутена Дегидрирование бутана Термический, крекинг. Из спирта. ...... [c.190]

    Таким образом, на основе литературных и собственных экспериментальных данных, полученных в лабораторных и промышленных условиях, установлены особенности образования и окисления коксовых отложений при окислительной каталитической конверсии тяжелого нефтяного сырья. Установлено, что в процессе коксообразования на катализаторах оксидного типа при окислительной конверсии тяжелого нефтяного сырья протекают реакции окисления, дегидрирования, деалкилирования, деструкции, полимеризации и ноли-конденсации асфальто-смолистых веществ, причем окислительное консекутивное превращение коксовых отложений приводит к более глубокой химической конверсии, чем термическое превращение. [c.95]

    Современное состояние вопросов. По-видимому, дегидрирование бутана является еще слишком дорогим методом для получения моторного бензина, и поэтому его можно применять только для получения более ценных продуктов. В обзоре от 1946 г. (фирма М. В. Келлог Ко ) [60], указывалось на нерентабельность дегидрирования пропана или бутанов до олефинов с целью алкилирования или изомеризации последних, так как большое количество газообразных олефинов получается в процессах термического или каталитического крекингов. По-видимому, процессы дегидрирования высших парафинов представили бы промышленный интерес, если бы при этом удалось получить высокие выходы олефинов. [c.200]

    Различие между полимеризацией этилена в присутствии и в отсутствии фосфорной кислоты состоит в том, что в первом случае наблюдается образование ароматических и парафиновых углеводородов, в продуктах же термической полимеризации этилена образуются небольшие количества парафинов ири полном отсутствии ароматических соединений. По-видимому, фосфорная кислота действует как катализатор гидрирования и дегидрирования. При термической полимеризации получены более высо-кокипящие углеводороды, чем при каталитической. [c.188]

    До возникновения повышенного спроса на стирол в связи с принятой с началом войны в США программой производства синтетического каучука его получали в небольшом количестве путем дегидрирования этилбензола. Для производства бутадиена в нефтяной промышленности применялись процессы высокотемпературного термического крекипга лигроинов и газойлей. При этом получались также другие ценные диолефины, такие как изопрен и циклопентадиен. Выходы бутадиена составляли всего лишь от 2 до 5% на сырье. К концу второй мировой войны процесс термического крекинга был также использован для получения так называемого qui kie бутадиена. Однако большая часть бутадиена получалась в результате дегидрирования бутенов. Применение бутана п тсачестве сырья для получения бутадиена составляло лишь небольшую долю намеченной программы. Широкое применение нашел сравнительно дорогой процесс превращения этилового спирта в бутадиен. Разработанный в Германии процесс получения бутадиена из ацетилена не был принят. После рассмотрения всех процессов правительство США утвердило план производства бутадиена, приведенный в табл. 1. [c.189]


    Непредельные углеводороды получаются главным образом в результате реакций дегидрирования, а также термического крекинга и пиролиза. [c.282]

    Примерами экзотермических реакций являются гидрогенизация, алкилпрование, синтез полиэтилена и другие процессы полимеризации, гидратация непредельных углеводородов и другие. К эндотор мическим реакциям относятся каталитический и термический крекинг, пиролиз, каталитический риформинг, дегидрирование и др.  [c.262]

    Этан-пропан. Несмотря на то что этилен можно приготовить пиролизом любого углеводородного сырья, этап, пропан, и смеси этих двух компонентов рассматриваются как наиболее приемлемые исходные продукты. Процесс строго термический, так как пе обнаружено катализатора, способного эффективно увеличивать скорость дегидрирования этана или дифференциально воздействовать на две стороны разложения пропана — дегидрирование и деметилирование. Пиролиз ведется при температуре около 730—815 С и под давлением 1,4—2,1 кГ1см время контакта — около 0,7—1,3 сек. Для уменьшения конденсационных реакций и одновременно — подвода тепла в зону реакции добавляют инертный разбавитель, такой как водяной пар. В табл. П-12 приведены типичные продукты подобного превращения. [c.99]

    Катализаторы для дегидрирования этилбен.зола. Этилбензол может быт], дегидрирован термическим путем, но в этом с.чучае продельные выходы составляют толысо 45—55% [48, 82] вместо выходов в 90% и выше, получаемых на наиболее соворшенпых катализаторах. За период с 1920 г. по настоя1цео время в качестве катализаторов процесса были исследованы разнообразные материалы. [c.208]

    Однако не следует думать, что реакция гидрирования этилена в эхан н на самом деле проста и протекает лишь в одном направлении. Ее можно легко осуществить даже при температуре —100°С на многих платиновых или палладиевых катализаторах и, конечно, при повышенных температурах, когда эта реакция идет очень активно. Но если при атмосферном давлении температура превышает приблизительно 700 °С, то начинается реакция дегидрирования. Термическое дегидрирование этана является промышленным способом получения этилена и обсуждается в гл. 4. [c.117]

    Примерами каталитических процессов, применяемых в нефтепереработке и нефтехимических производствах, являются каталитиче ский крекинг и риформипг различных видов сырья, гидрогенизация, дегидрирование, полимеризация, гидратация, алкплирование и другие. К некаталитическим процессам относятся термический крекинг и пиролиз, протекающие под воздействием высоких температур. [c.262]

    Удельное значение протекающих одновременно реакций крекинга а дегидрирования зависит в первую очередь от числа атомов С в исходном материале. В то время как этан при высоком нагреве превращается практик чески только в этилен и водород и, следовательно, здесь в основном идет реакция термического дегидрирования, при нагреве пропана уже большее значение имеет реакция крекинга с образованием этилена и метана. При нагреве бутана до высокой температуры образуется совсем немного бутена. Бутан расщепляется главным образом на этилен и этан или, соответственно на пронен и метан. Изобутан, напротив, примерно на 50% превращается в изобутен. [c.47]

    При пиролизе бутана (рис. 22) наибольшее содергкание олефинов наблюдается при значительно более низких температурах — при 690°. Это указывает на меньшую термическую стабильность бутана. Наибольшая концентрация этилена наблюдается уже ири 750°. Реакция дегидрирования [c.51]

    Если циклопентан и его производные предварительно не изо-меризовать в Св-кольцевую структуру, то при дегидрировании они не образуют ароматических углеводородов [256, 257]. В то время как термодинамические условия при температурах свыше 300° С благоприятны для образования ароматических углеводородов [258], при термической переработке циклогексана ароматики также не образуется. При температуре 550° С получаются очень незначительные количества бензола [259], а при 620° С выход ароматики составляет только 0,4 мольных процента, несмотря на то, что разложению крекингом подвергается до 24% циклогексана [260]. Отчасти алкильные производные циклогек- [c.101]

    Большую роль играет дегидрирование. этана и бутана в этилен и бутнлен. Дегидрирование пропана в промышленном масштабе осуществляется незначительно, так как пропилен, образующийся совместно с другими углеводородами прн других процессах, в частности при пиролизе, полностью покрывает потребность в данном продукте в большинстве промышленных стран. Поэтому термическое и каталитическое дегидрирование пропана описывается вкратце. Правда, пропилен, получаемый путем каталитического дегидрирования пропана, дешевле образующегося при пиролизе. [c.10]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Максимальное содержание олефинов в выходящем газе составляло 21, 30 и 33% для пропана, н-бутана и изобутана соответственно. Табл. 8 иллюстрирует преиму111,ество каталитического дегидрирования перед термическим. [c.197]

    Между дегидрированием бутена-1 и бутена-2 большой разницы ые наблюдается. Продукты конверсии любого из этих углеводородов содержат обычно все три изомерных нормальных бутена, что, несомненно, указьшает на смещение двойной связи. В то же время при этом образуются незначительные количества изобутилена и дегидрированием последнего получается лишь незначительное количество бутадиена. Парафиновые углеводороды, папример, и-бутан, в условиях дегидрирования бутена с добавкой водяного пара также не претерпевают заметной конверсии. Однако в случае рециркуляции заводского сырья, содержащего около 70% м-бутенов, накопление в ном изобутилена и бутанов не происходит. В неочищенном бутадиене могут присутствовать в небольших количествах такие вещества, как аллен, метилацетилен, винилацетилен, этилацетилен, бутадиен-1,2, диацетилен и димотилацетилен. В больших количествах эти продукты содержатся в бутадиене, полученном при высокотемпературном термическом крекинге. [c.206]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    Каталитическим дегидрированием этилбензола в больших масштабах получают стирол. Условия образования бутадиена из н-бутана или и-бутенов применимы также и для получения стирола. В термическом дегидрировании при температурах свыше 600° С выход стирола колеблется от 50 до 55%, но при использовании катализаторов уже при более низких температурах превращение почти полностью заканчивается [270]. В присутствии инертного рзабавителя (водяного пара, двуокиси углерода, метана, бензола) наблюдается более высокий выход стирола и значительно меньший крекинг углеводородов [271]. Так как катализатор стареет, температура реакции постепенно увеличивается с 600 до 660° С. При превращении за проход около 35—40% общий выход стирола составляет около 90% [272]. Подобным же образом можно дегидрировать и другие алкилбензолы. Так, например, изопропилбензол дает а-метилстирол [273], однако при жестких условиях дегидрирования получается от 15 до 30% стирола [274]. [c.102]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]


Смотреть страницы где упоминается термин Дегидрирование термическое: [c.88]    [c.271]    [c.50]    [c.52]    [c.60]    [c.12]    [c.160]    [c.141]    [c.197]    [c.339]   
Технология органического синтеза (1987) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Диизопропилкетон термическое дегидрирование

Парафины термическое дегидрирование

Региональная оптимизация рециркуляционной системы термического дегидрирования этана

Региональная оптимизация термического дегидрирования зтана

Спирты дегидрирование термическое

Термическое дегидрирование н-парафинов

Термическое дегидрирование пропана

Термическое дегидрирование этана в этилен

Чисто термическое дегидрирование этапа в этилен

Этиламин термическое дегидрирование



© 2025 chem21.info Реклама на сайте