Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения и выделения углеводородов ароматического ряда

    МЕТОДЫ ОПРЕДЕЛЕНИЯ И ВЫДЕЛЕНИЯ УГЛЕВОДОРОДОВ АРОМАТИЧЕСКОГО РЯДА [c.226]

    Трудами ряда советских и зарубежных ученых разработаны методы как количественного определения индивидуальных углеводородов в низко кипящих фракциях нефти, так и выделения некоторых индивидуальных углеводородов из этих фракций. Однако в связи со сложностью выделения индивидуальных соединений часто ограничиваются количественным определением типа углеводородов (парафины, нафтены, ароматические), входящих в состав фракции, определением группового состава фракции. Этот метод успешно применяется для исследования бензиновых и керосиновых фракций. [c.317]


    Пикратный метод для выделения высших ароматических углеводородов из нефти неприменим, так как эти углеводороды пикратов не образуют. Хроматография, во всяком случае, позволяет выделить из нефтяных фракций чистые ароматические углеводороды, особенно при повторном хроматографировании. Анализ этих углеводородов показывает, что с ростом температуры кипения цикличность увеличивается с 2 до 4, чаще до 3. Элементарный состав также показывает постепенный рост содержания углерода, что наряду с определением молекулярного веса позволяет отнести выделенные углеводороды к классам от С Н2 )2 ДО С Н2п—18-Как правило, получаются эмпирические формулы с дробными показателями, например, С Н2 17,1 или С Н2п-19,5 и т. п., так как хроматографирование в его общепринятой форме не позволяет сразу выделить индивидуальные вещества или даже вещества одного ароматического ряда. Всегда можно предполагать, что полученная узкая фракция представляет собой смеси близких классов, например нафталина и антрацена в переменных отношениях. [c.118]

    При исследовании высокомолекулярных ароматических соединений применялись методы разделения при помощи фракционирования растворителями, молекулярной перегонки в глубоком вакууме, адсорбционного разделения, а для исследования выделенных узких фракций — определение ряда физико-химических констант, каталитическое гидрирование водородом, спектроскопическое исследование в инфракрасной и ультрафиолетовой частях спектра, метод сопоставления со свойствами индивидуальных углеводородов, а также современные методы определения структурногруппового состава [1—6]. [c.54]

    Пикратный метод выделения бициклической ароматики применялся главным образом советскими исследователями при систематическом изучении керосиновых фракций. При помощи этого метода был выделен и идентифицирован ряд гомологов нафталина и других бициклических ароматических углеводородов, однако количественное определение этих компонентов пикратным методом невозможно. Применение этого метода к более высококипящим фракциям также затруднительно. Для выделения гомологов антрацена из фракции нефти Кувейта с успехом использовался ма-леиновый ангидрид. Для выделения и разделения азотистых оснований из нефти служили пикраты. В первом случае при помощи пикратов из джаркурганской нефти были получены алкилхпно-лины (С. Л. Гусинская, 1958), а во втором из калифорнийской — производные пиридинов (Н. Lo hte, 1951). В области сернистых [c.250]


    Успешное применение метода ГЖХ для анализа нефтяных углеводородов позволило исследователям получить более полное представление о количественном рапределении индивидуальных углеводородов ароматического ряда, содержащихся в легких и средних фракциях нефти. Однако концентраты ароматических углеводородов, выделенные из нефтяных фракций, как правило, лредставляют собой чрезвычайно сложные смеси, что обусловлено наличием большого числа изомеров с близкими свойствами, и поэтому подбор условий для их газохроматографического разделения часто представляет собой задачу определенной трудности. Наиболее важное значение для эффективного разделения аро.ма-тических углеводородов имеет выбор подходящей неподвижной >1 идкой фазы, а также составление композиций из двух и более жидких фаз, обладающих благодаря комплексным свойствам высокой селективностью. [c.154]

    Первые опыты хроматографического отделения ароматических углеводородов от парафино-нафтеновой части в бензино-дигроиновой фракции осуществили Дей I, 2 Энглер [3], Гурвич [4, 5], Тарасов [6]. Позднее Россини, Майер и Форциати [7, 8, а также Великовский, Павлова, Гофман и др. [9] своими исследованиями подтвердили перспективность этого метода применительно к легким и средним фракциям нефти. Хроматография на силикагеле вошла существенной составной частью в предложенный Ландсбергом, Казанским и сотр. [10] метод определения индивидуального углеводородного состава бензинов прямой гонки. Впоследствии многие исследователи стали широко применять хроматографический метод для разделения легких, средних и тяжелых фракций нефти и для разделения крекинг-продуктов [11—13]. Аллибон [14] впервые осуществил хроматографическое разделение масляных фракций на различных сорбентах при большом разведении масла петролейным эфиром. Вслед за ним многие авторы сообщили о преимуществе метода хроматографии перед другими методами разделения [15], о выделении чистых ароматических углеводородов [16, 17], об отделении нормальных парафиновых углеводородов изостроения от нафтеновых [18], о выделении чистых нафтеновых углеводородов [19] и о выделении ряда индивидуальных нормальных парафиновых углеводородов от С21 до С30 [20, 21], [c.28]

    Как известно, одним из методов определения БПК является использование манометров или аппарата Варбурга и Зонгеиа. Первое устройство было испытано в исследованиях [37] и [86], при этом были отмечены определенные ограничения к его использованию. Впоследствии аппарат Зонгена был использован для оценки потребления кислорода в процессе окисления сырой нефти в морской воде в полевых условиях в течение 28 дней. Весь выделенный СОг оставался в забуференной среде с морской водой. Отмечено, что потребление кислорода зависит как от ростовых особенностей заражающей культуры, так и от степени разрушения нефти [44]. Был также использован кислородный электрод для определения окисления ряда углеводородов клеточной взвесью чистой культуры oryneba terium [87]. Углеводороды добавлялись в виде эмульсии. Отмечено, что высокие и низкие уровни концентраций лимитировали скорость окисления. Скорость окисления увеличивалась от а-пентана до гомологов ряда п-октана и затем снижалась до п-гептадекана. я-Алкены до Сю окислялись с меньшей скоростью, чем связанные алканы, нри Сю и выше реверсия была истинной. Галогенсодержащие алканы, изоалканы, циклоалканы и ароматические соединения окислялись гораздо медленнее. [c.145]

    При исследовании высоко молекулярных ароматических компонентов и смол применялись следующие методы разделения фрак-ционировка растворителями, молекулярная перегонка в глубоком вакууме, адсорбционное разделение, а для исследования выделенных веществ — определение ряда физико-химических констант, каталитическое гидрирование водородом, спектроскопическое исследование в инфракрасной части спектра, метод сопоставления со свойствами индивидуальных углеводородов, а также современные методы определения структурно-группового состава [1—5]. [c.126]

    Высокоэффективную жидкостную хроматографию с успехом применяли для анализа масел и других высококипящих и нелетучих продуктов, а также для выделения отдельных фракций с последующим исследованием их другими, в основном спектральными, методами [45, 170--I75j, Наряду с определением группового химического состава и полным разделением нефтепродуктов на фракции [176, 177] жидкостную адсорбционную хроматографию широко используют для выделения и разделения отдельных групп или классов соединений, например, для разделения на ароматическую и неароматическую фракции, вьщеления насыщенных соединений [179], а с сорбентами, модифицированными полярными соединениями, - для вьщеления олефиновых углеводородов [180, 181]. Методом жидкостной хроматографии можно выделить, разделить на подклассы, определить малые содержания ароматических углеводородов, смол и асфальтенов [182-184] в нефтепродуктах. Ионообменную и координационную хроматографию с успехом применяют для вьщеления и разделения азотистых и других полярных соединений [185, 186], содержащихся в нефтепродуктах. Жидкостную хроматографию, в основном жидкостноадсорбционную, а в ряде случаев и в сочетании с ионообменной и координационной, широко используют для разделения битумов и более легких нефтепродуктов на ряд фракций углеводородов и полярных соединений с последующим анализом этих фракций спектральными и физико-химическими методами [142, 174, 187-189]. Для достижения разделения на более узкие фракции жидкостную хроматографию обычно сочетают с другими методами разделения, такими, как экстракция, осаждение и др. [c.120]


    Для количественпого определения ароматических углеводородов был предложен целый ряд специальных методов [18]. Одни из них основаны на определении тех или иных физических констант углеводородных смесей, например, их удельных весов, показателей преломления и т. д., которые, как известно, весьма существенно изменяются от большего или меньшего содержания в подобных смесях бензола и его гомологов. Это — чисто физические методы. Другие методы носят скорее химический характер. Они основаны на количественном выделении ароматических углеводородов из анализируемой смеси в форме тех или иных ароматических производных, как сульфокислот, нитросоединений, формолитов и т. п. Не вдаваясь в подробную характеристику всех методов, остановимся лишь на наиболее употребительных из них. [c.99]

    После внесения ряда методических изменений была сделана попытка применить комбинированный метод для анализа более высококипящих— лигроиновых — фракций [259]. Однако установление индивидуального состава выделенных узких фракций лигроина по спектрам комбинационного рассеяния затруднено из-за отсутствия эталонных углеводородов. Синтез необходимых углеводородов потребовал бы огромной затраты сил и времени. Поэтому была сделана попытка [3621 установления уточненного узко-группового состава лигроина косчагылской нефти с пределами кипения 150—250°С по линиям в молекулярных спектрах, характерным для определенных структурных признаков, например количества звеньев в цикле, числа и положения боковых цепей, присутствия определенных группировок (третичный и четвертичный атомы углерода и т. п.). Такие признаки, характеризующие определенный тип замещения бензольного ядра, были, например, обнаружены для моно-, ди-, три- и тетраалкилбензолов независимо от строения алкильной группы. Так как найденные характеристические спектральные линии оказались более надежными и четкими для ароматических углеводородов, то в исследованном лигроине удалось расшифровать ароматическую часть на 70%, циклогексановую — на 50%, а парафино-циклопентановую — лишь незначительно. [c.40]


Смотреть страницы где упоминается термин Методы определения и выделения углеводородов ароматического ряда: [c.105]    [c.165]    [c.154]    [c.73]    [c.632]   
Смотреть главы в:

Химия нефти -> Методы определения и выделения углеводородов ароматического ряда




ПОИСК





Смотрите так же термины и статьи:

Выделение ароматических

Выделение и определение ароматических углеводородов

Выделение углеводородов

Выделения методы

Углеводороды ряда



© 2025 chem21.info Реклама на сайте