Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные галогениды свойства

    Сопоставление свойств комплексных галогенидов калия и сурьмы, рубидия и сурьмы позволяет рассчитывать на возможность использования и этих соединений при решении проблемы разделения близких по свойствам щелочных металлов, в частности, при разделении Rb и К, с получением если не реактивных солей Rb, то, по крайней мере, богатых его концентратов. [c.344]


    Все обнаруженные в исследованных системах комплексные соединения идентифицированы методами кристаллооптического и рентгенофазового анализов, определены их пик-нометрические плотности и проведено термографическое исследование. Некоторые свойства изученных нами комплексных галогенидов приведены в табл. 1 и 2 [9—14, 16]. [c.348]

    Настоящий обзор посвящен комплексным галогенидам элементов VHI группы Периодической системы Д. И. Менделеева. Это элементы группы железа (Fe, Со, Ni), так называемые палладиевые (Ru, Rh, Pd) и платиновые (Os, Ir, Pt) металлы. Элементы этой группы характеризуются значительным разнообразием электронных конфигураций, состояний окисления, химических свойств. [c.84]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]

    За счет донорно-акцепторного взаимодействия, о возможности которого упоминалось выше, реакции присоединения вообще характерны для галогенидов бора. Наибольшее значение из соответствующих производных имеет комплексная тетрафторо-борная (иначе борофтористоводородная) кислота Н [ВРц]. Ее кислотные свойства выражены сильнее, чем у НР. Большинство ее солей — фтороборатов — хорошо растворимы в воде. Н[Вр4] устойчива только в растворе и может быть получена пропусканием ВРз через раствор НР в воде  [c.253]


    Уже упоминалось, что ио химическим свойствам РЗЭ как в металлическом состоянии, так и в сложных соединениях очень похожи на кальций. Так же как у кальция, у РЗЭ(III) относительно плохо растворимы в воде карбонаты, фосфаты, оксалаты, сульфаты. Хорошо растворимы нитраты, галогениды (кроме фторидов). Так же как кальций, РЗЭ образуют устойчивые комплексные соединения только с наиболее сильными комплексообразующими лигандами, замыкающими вокруг иона РЗЭ хелатные (клешневидные) циклы. [c.74]

    Для всех рассматриваемых соединений очень характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно их солями. Наиболее типичны комплексные производные общей формулы Мг[ЭГб] (где М—одновалентный металл). Они хорошо кристаллизуются и гораздо менее подвергаются гидролизу, чем исходные галогениды ЭГ4, Несмотря на то что элементы подгруппы титана по своей атомной структуре не являются аналогами кремния, производные их характеристической валентности хорошо укладываются в один ряд с соответствующими кремневыми. В частности, весьма закономерно изменяются при переходе от 51 к Н1 свойства высших [c.344]

    Алюминий. Особенности химии алюминия. Второй типический элемент П1 группы Периодической системы — алюминий — является первым и самым легким sp-металлом с электронной формулой ls 2s 2p 3s 3pK У алюминия по сравнению с бором атомный радиус больше, а потенциалы ионизации меньше следовательно, возрастают металлические свойства. В отличие от неметалла бора алюминий является амфотерным элементом в широком смысле слова. Так, металлический алюминий и его гидроксид растворяются и в кислотах, и в щелочах, а Al(+3) образует и комплексные катионы, и ацидокомплексы. Алюминий по праву можно считать родоначальником как элементов подгруппы галлия, так и элементов подгруппы скандия. Это видно из рис. 138, на котором показан характер изменения энтальпий образования оксидов и галогенидов алюминия и элементов подгрупп галлия и скандия. [c.331]

    Контроль процесса приготовления катализатора включает в себя прежде всего определение концентрации растворов компонентов катализатора галогенидов и алкилгалогенидов металлов и металлорганических соединений. Получение комплексного катализатора является одной из важнейших стадий производства каучука, определяющей в значительной степени скорость процесса полимеризации и свойства полимера. Поэтому от точности сведений о концентрации исходных для приготовления катализатора продуктов зависит его активность. [c.71]

    Стереорегулярные каучуки, главным образом полибутадиен и полиизопрен, обладают высокой эластичностью и другими ценными свойствами. Во многих отношениях они равноценны натуральному каучуку и даже превосходят его и имеют значительные преимущества перед другими синтетическими каучуками общего назначения. Для получения стереорегулярных каучуков используется метод полимеризации в растворах в присутствии стереоспецифических катализаторов—лития и его органических производных (например, бутиллития), комплексных катализаторов (алкилалюминия в сочетании с галогенидами титана, кобальта, ванадия) и др. [c.483]

    I группе элементы главной подгруппы почти не обладают способностью к комплексообразованию в отличие от подгруппы меди, то в IV группе, несмотря на значительное различие в химических свойствах между главной и побочной подгруппами, различие в комплексных соединениях этих элементов сравнительно невелико и в большинстве случаев они дают однотипные соединения. К ним в первую очередь следует отнести многочисленные комплексные галогениды типа Мег[ЭлРб]. Наиболее прочны фториды. С увеличением атомной массы, т. е. в ряду Ме2[Т1Рб] — Ме2[ТНРб], устойчивость фторидных комплексов падает. [c.394]

    Прн экспоннрованнн слоев комплексных галогенидов этих я-до-норов, нанесенных вакуумной сублимацией, наблюдается изменение строения субстрата и резкая дифференциация физических свойств участков слоя в результате обратного переноса заряда и удаления галогена в экспонированных участках остается только я-донор  [c.264]

    Большие и важные группы соединений, которые могут существовать только в кристаллическом состоянии, включают комплексные галогениды и оксиды, кислые и основные солн и гидраты. В частности, один из важных результатов изучения кристаллических структур состоит в признании того, что не-стехиометрические соединения не являются редкостью, как это некогда полагали. В самых общих чертах нестехиометрическое соединение можно определить как твердую фазу, которая устойчива в определенной области (по составу). С одной стороны, это определение охватывает все случаи изоморфного замещения и все виды твердых растворов, включая такие, состав которых покрывает всю область от одного чистого компонента до другого. В качестве другого предельного случая можно указать на фосфоры (люминесцентные ZnS или ZnS—Си), которые обязаны своими свойствами неправильному размещению и (или) внедрению примесных атомов, действующих как электронные ловушки , а также окрашенные галогениды (щелочных и щелочноземельных металлов), в которых отдельные положения гало-генндных ионов заняты электронами (F-центры) эти дефекты присутствуют в очень малой концентрации, часто в пределах от 10 до 10 . Для химика-неорганика больший интерес представляет тот факт, что многим простым бинарным соединениям свойственны диапазоны составов, зависящие от температуры и способа приготовления. Нестехиометрия подразумевает структурную неупорядоченность, а часто и присутствие того или иного элемента более чем в одном валентном состоянии она может приводить к возникновению иолупроводимости и каталитической активности. Примеры нестехиометрических бинарных соединений включают много оксидов и сульфидов, часть гидридов и промежуточные твердые растворы внедрения атомов С и N в металлы. Более сложными примерами могут служить различные комплексные оксиды со слоистыми и каркасными структурами, такие, как бронзы (разд. 13.8). Существование зеленого [c.14]


    Вместо того чтобы распространять теорию двух взаимодействующих центров внутри молекулы на случаи, когда имеются три или более таких центров, целесообразнее рассмотреть свойства антиферромагнитных систем для более общего случая [83, 112]. Ряд неорганических соединений кристаллизуется в виде гигантских молекул , в которых элементарная ячейка не обязательно соответствует химическим молекулярном единицам. Например, ряд галогенидов двухвалентных переходных металлов образует смешанные соли с галогенидами щелочных металлов типа М М Хд (например, KNiFз), в которых каждый галоген является мостиком между нисколькими ионами переходных металлов и наоборот. В таких веществах магнитное разбавление может быть не вполне достаточным. В отличие от внутримолекулярного антиферромагнетизма в этом случае каждый парамагнитный ион взаимодействует с несколькими соседними, а каждый из соседей в свою очередь взаимодействует со своим набором соседей и так далее по всему кристаллу. Для наличия таких взаимодействующих наборов обычно необходимо, чтобы кристалл имел кубическую или близкую к ней симметрию. Пригодными расположениями являются также объемноцентрированные и гранецентриро-ванные кубические решетки и решетки типа шпинели, и окислы металлов, простые галогениды и некоторые комплексные галогениды являются наиболее существенными представителями класса соединений, у которых обнаружен решеточный антиферромагнетизм. В этих случаях ион металла окружен обычно октаэдром или тетраэдром из галогенов или ионов кислорода с общими вершинами, ребрами или даже гранями. Поскольку непосредственное снин-спиновое взаимодействие за счет перекрывания орбит металлов быстро убывает, когда расстояние между ионами металла превосходит сумму радиусов ионов, пе удивительно, что взаимодействие происходит через посредство кислорода или галогена (как в М—О—М), а не за счет непосредственного обмена. Это обстоятельство приводит к довольно удивительному факту, а именно к тому, что взаимодействие оказывается наиболее сильным не между ближайшими соседями, а между соседями через одного (это явление называется сверхобменом). На рис. 83 изображена схема обмена в МпО (гранецентрированная решетка), иллюстрирующая эти положения [107]. Поскольку спин парамагнитного центра в решетке антиферромагнетика направлен в противоположную сторону по сравнению со спинами всех его соседей, с которыми он взаимодействует, а спины этих центров в свою очередь антипараллельны спинам их соседей, то очевидно, что антиферромагнитная решетка состоит из двух взаимопроникающих ферромагнитных решеток со спинами, направленными в противоположные стороны. [c.405]

    Молекулярный состав пара комплексных галогенидов, а также их термодинамические свойства — энтальпии сублимации и диссоциации — исследованы достаточно подробно однако, наибольшее число публикаций относится только к комплексным фторидам и хлоридам. За последние несколько лет появились работы, обобщающие на- копленный большой экспериментальный материал [130,- 422, 487]. Комплексные фториды изучает, в основном, Сидоров и его сотрудники [13, с. 494 14, 92]. В работах [488] обсуждаются закономерности образования масс-спектров комплексных соединений, свкзан-ные с их строением. Сидоров [489[ продемонстрировал возможности масс-спектрометрического метода для построения или уточнения фазовых диаграмм систем и высказал соображение о путях обогащения газовой фазы комплексными молекулами, например, при исйаре-нии метастабильных фаз. Эта идея была реализована в работе Сорокина [490]. Существование разнообразных молекул газообразных комплексных хлоридов установили Бинневис и Шефер [491]. В дополнение к уже упомянутым обзорам мы приводим результаты некоторых исследований комплексных фторидов и хлоридов. [c.123]

    В табл. 3 экспериментальные значения расстояний между "не связанными" атомами сравниваются с суммами ковалентных радиусов. Нетрудно видеть, что в димерных молекулах галогенидов щелочньк элементов, в молекулах солей типа а также в комплексных галогенидах типа Nle/ILX эти расстояния оказываются даже меньше, чем сумма ковалентных радиусов. С точки зрения общепринятых представлений это должно свидетельствовать об образовании нормальной ковалентной связи, что противоречит всем свойствам рассматриваемых молекул. Б то же время, если при сравнении исполь зовать не ковалентные,а ионные радиусы металлов, это противоречие снимается. Таким образом, анализ особенностей геометрической шнфигураши приводит к выводу о сходстве характера связи атома металла в молекулах комплексных галогенидов и солей и в димерных молекулах галогенидов щелочных элементов. [c.9]

    Моющая и противокоррозионная присадка, содержащая азот и серу, была синтезирована реакцией алкенилянтарного ангидрида со свободной серой и дальнейшей обработкой полученного соединения полиалкенилполиамином [пат. США 3306908]. Для синтеза сукцинимидной присадки, обладающей моющими, противокоррозионными и противоизносными свойствами, продукт реакции алке- нилянтарного ангидрида с амином обрабатывали солями (нитратами, нитритами, галогенидами, фосфатами, фосфитами, сульфатами, сульфитами, карбонатами, боратами) и оксидами кадмия, никеля и других металлов для образования комплексных соединений [пат. США 3185697]. К сукцинимидным относится также присадка Олоа-1200, производимая в промышленных масштабах в США, Англии, Франции. [c.92]

    Донорными свойствами объясняются многие известные реакции углеводородов, сопровождающиеся замещением их атомов водорода атомами металлов. Акцепторными свойствами объясняется проявление электропроводности растворов углеводородов в жидких талогенводо-родах, СИЛЬНО увеличивающейся по мере добавления в раствор галогенидов бора, алюминия, бериллия, сурьмы и других соединений, склонных образовывать комплексные ионы типа [Вр4]-, [МСЦ]-, ЗЬСЦ]—, [Вер4]- и т. д. [c.403]

    У алюминия по сравнению с бором атомный радиус больше, а потенциалы ионизации меньше, следовательно, возрастают металлические свойства. В отличие от неметалла бора алюминий является амфотерным элементом в широком смысле слова. Так, металлический алюминий и его гидроксид растворяются и в кислотах, и в щелочах, а А1(+3) образует и комплексные катионы, и ацидокомилек-сы. Алюминий по праву можно считать родоначальником как элементов подгруппы галлия, так и элементов подгруппы скандия. Это видно из рис. 23, на котором показан характер изменения энтальпий образования оксидов и галогенидов алюминия и элементов подгрупп галлия и скандия. [c.147]

    Все известные галогениды элементов подгруппы мышьяка склонны к реакциям комплексообразования. При этом они способны образовывать два типа комплексных соединений ацидокомплексы и катионршге комплексы. Пентагалогениды являются лучшими комплексообразователями, чем тригалогениды, что можно легко понять как с позиции электростатических представлений, так и с позиций МВС. Для тригалогенидов более характерны катионные комплексы, которые можно рассматривать как продукты присоединения к ЭГ., нейтральных молекул, имеющих неподеленные электронные пары, например [Лз(ЫНз)4]С)з, [В](Ы0)]С1з и т. д. Кроме того, они образуют и ацидокомплексы при взаимодействии с галогенидами активных металлов, которые с точки зрения электронной теории кислот и оснований обладают основными свойствами, например  [c.294]

    Растворы Li l поглощают в большом количестве аммиак, что связано с об-)азованием комплексных ионов Li(NH3) l+. Способность Li l (также -iBr и Lil) образовывать соединения определенного состава с аммиаком, а также с метиламином, этиламином и другими напоминает подобные свойства галогенидов щелочноземельных металлов. [c.20]

    Обнаружить комплексы двух низших алюминийтриалкилов было легко, так как от исходных веществ эти новые соединения отличаются рядом характерных свойств. По самопроизвольной кристаллизации или же по образованию второй жидкой фазы они могут быть признаны особыми новыми веществами. При переходе к высшим алюминийтриалкилам такая возможность исчезает. Комплексные соединения часто не кристаллизуются, они почти всегда растворимы в алюминийтриалкилах и поэтому двух жидких фаз не образуется. Несмотря на это, о комплексо-образовании можно уверенно судить по тому, что галогениды щелочных металлов растворяются в молярных соотношениях, не превышающих соотношения 1 1. Если установлено, что хлористый калий в триэтилалюминии подчиняется этому условию, а бромистый калии нерастворим даже в виде следов, то это явление не следует объяснять тем, что хлорид как таковой специфически растворим, а бромид нерастворим. Необходимо допустить в первом случае образование нового вещества, поскольку бромиды щелочных металлов в органических растворителях более растворимы, чем хлориды щелочных металлов. Еще более убедительно то, что такой галогенид щелочного металла, как хлористый рубидий, в одном из двух алюминийтриалкилов, алкильные группы которых по числу атомов С близки между собой, а именно в три-н-бутилалюминии, растворяется до молярного соотношения 1 1, а во втором — три-н-гексилалюми-нии — совсем нерастворим. В первом случае комплекс стабилен, во втором — комплекс неустойчив. [c.55]

    Известны окрашенные комплексные соединения галогенидов бериллия с дипирндилом Ве(01ру)Х2[14 5]. Бромид п иодид бериллия близки по свойствам к хлориду бериллия так же как последний, они характеризуются легкоплавкостью и летучестью, плохо проводят электрический ток в расплавленном состоянии, образуют кристаллогидраты ВеХ2-4Н20, склонны к образованию продуктов присоединения, гигроскопичны и сильно гидролизованы в растворе. Модификации бромида и иодида бериллия изоструктурны соответствующим модификациям ВеСЬ [146, 147]. [c.23]

    Хлориды, бромиды, иодиды, перхлораты, броматы, нитраты, ацетаты легко растворяются в воде, а фториды, фосфаты, карбонаты, оксалаты — труднорастворимы, но ионы Ьп + с большим атомным номером образуют растворимые карбонатные и оксалатные комплексы с избытком карбонатов и оксалатов щелочных металлов. Ионы Ей, УЬ, 8т в водном рас гворе могут восстанавливаться из Ьп + в Ьп + причем Еи + довольно устойчив (табл. 5.9). Эти двухвалентные катионы имеют свойства, близкие к свойствам катиона Ва +. Обладающие полупроводниковыми свойствами и металлическим блеском соединения типа ЬпНг, нестабильные халькогениды (ЬпУ) и галогениды (ЬпХг) известны для многих лантаноидов. Церий легко получить в состоянии окисления - -4, и Се + стабилен в водном растворе в виде аква-иона н различных комплексных ионов, а также в виде соединений в твердом состоянии. Рг(1У) и ТЬ(1У) образуют оксиды, смешанные оксиды, фториды и комплексы с фтором, которые известны и для Ы(1(1У), Оу(1У). [c.294]


Смотреть страницы где упоминается термин Комплексные галогениды свойства: [c.142]    [c.14]    [c.430]    [c.142]    [c.362]    [c.329]    [c.116]    [c.91]    [c.144]    [c.267]    [c.428]    [c.654]    [c.332]    [c.338]    [c.75]    [c.132]    [c.34]    [c.71]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.21 ]




ПОИСК







© 2024 chem21.info Реклама на сайте