Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения ароматические

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    Сильно ароматизированы и тяжелые фракции сланцевых смол, в которых 50—60% составляют три- и тетрациклические соединения Высокомолекулярные соединения нефти также очень сложны по составу и ароматизированы но для них более характерны длинные цепи с ароматическими, в том числе конденсированными, системами у одного или обоих концов цепи [c.174]

    Другой проблемой является наличие асфальтенов и высокомолекулярных соединений ароматического характера, которые дезактивируют катализатор, образуя на его поверхности кокс. Исключительная важность борьбы с коксообразованием побудила начать систематическое изучение химической природы асфальтенов и высокомолекулярных соединений нефти, а также механизма образования кокса. К настоящему времени сделаны лишь первые шаги, но следует ожидать быстрого развития такого рода исследований. [c.301]

    Сырье (крекинг-сырье). Высокомолекулярные соединения расщепляются легче низкомолекулярных, причем парафины нормального строения отличаются наибольшей склонностью к расщеплению далее следуют изопарафины, олефины, нафтены и ароматические углеводороды. [c.16]

    Выделяющиеся при высоких температурах в верхней части колонны высокомолекулярные соединения (смолы) и полициклические ароматические углеводороды извлекают из про-панового раствора низкомолекулярные смолы благодаря действию дисперсионных сил. Таким образом, наряду с процессом фракционирования пропаном здесь наблюдается процесс селективной экстракции смолами и полициклическими ароматическими углеводородами. [c.40]


    Образование высокомолекулярных соединений происходит за счет взаимодействия как различных моноциклических ароматических углеводородов, так и последних с диеновыми, одновременно присутствующими в смеси [48], и образующимися из олефинов (см. выше). [c.258]

    С утяжелением углеводородных растворителей их селе тивность падает, что приводит к растворению значительных количеств высокомолекулярных продуктов (ароматических соединений и смол). При этом выход деасфальтизата увеличивается, а его качество снижается. Однако во всех случаях при деасфальтизации почти полностью извлекаются асфальтены, а оставшиеся в деасфальтизате металлы легко удаляются при гидрообессеривании (трудно удаляемая часть металлов остается в асфальтите). [c.128]

    Экспериментальные данные, относящиеся к характеристике свойств и химического состава высокомолекулярных углеводородов наиболее высокой степени цикличности и конденсированности, содержащихся в сырых нефтях, показывают, что такие структуры, как конденсированные ароматические ядра, состоящие из трех и более бензольных колец, если и присутствуют, то лишь в незначительных количествах. Конденсированным ядром чисто ароматического характера, наиболее широко представленным среди высокомолекулярных соединений нефти, является, несомненно, нафталиновая система. [c.295]

    Отмеченные зависимости показывают, что при наличии прочно связанного водорода в ароматических структурах пиролизной смолы и кислорода в сложных гетероциклических высокомолекулярных соединениях тяжелых нефтяных остатков снижается истинная плотность кокса из этого сырья. Торможен ие в процессе уплотнения углеродных комплексов продолжается до превращения кокса в графит, и требуются более высокие температуры для заверщения это. о процесса. В связи с этим можно сказать, что чем меньше истинная плотность кокса, тем больше энергия активации его графитации. [c.198]

    Цеолитсодержащие катализаторы отравляются азотом в про мышленных условиях в значительно меньшей степени, чем аморфные. Большая часть азота в сырье сосредоточена в высокомолекулярных полициклических ароматических углеводородах, и молекулярно-ситовые свойства цеолитов препятствуют отравлению их активных центров. Сернистые и кислородные соединения сырья на активность синтетических алюмосиликатных катализаторов не влияют. [c.228]

    По современным представлениям разрабатываемые смазочные материалы представляют собой сложные коллоидные системы, состоящие из различных по качеству и составу высокомолекулярных соединений (асфальтенов, смол, полициклических ароматически и нафтеновых углеводородов с гетеросоединениями в виде молекул кислорода, серы, азота) и низкомолекулярных углеводородов различного строения. [c.273]

    Чем объясняется увеличение растворимости углей, подвергнутых алкилированию Ранее авторы этой статьи показали, что под действием катализаторов Фриделя — Крафтса протекают реакции крекинга и конденсации молекул угля. В соответствии с сегодняшними представлениями, битуминозные угли представляют собой смесь высокомолекулярных соединений, молекулы которых состоят из ароматических фрагментов, связанных алифатическими или эфирными мостиками  [c.306]

    В результате каталитического крекинга получаются непредельные углеводороды Сз и С4, изопарафиновые углеводороды С4 и С5 и высокооктановые бензины [25,26]. В процессе гидрокрекинга получается дополнительное количество изопарафиновых углеводородов С4 и Се. Газообразные непредельные углеводороды используются для производства алкилата, для синтеза каучука и различных высокомолекулярных соединений. Бензины каталитического крекинга предназначены для получения товарного бензина нужного фракционного состава и повышения их октановых чисел в случае вывода части индивидуальных ароматических углеводородов из бензи- [c.347]

    Образовавшиеся многоядерные ароматические углеводороды находясь в зоне высоких температур, уплотняются дальше, образуя ещ е более высокомолекулярные соединения, составляющие смолы, асфальтены и, наконец, карбоиды. [c.303]

    По мнению Кухаренко, это высокомолекулярные соединения, образованные многократными повторениями основных группировок атомов, связанных между собой главными валентностями. Эти группировки атомов, обозначенные К, К, К" и К", представляют собой элементарные структурные единицы гумусовых кислот. Они являются ароматическими системами различной степени конденсации, которые имеют боковые цепи и функциональные группы как в бензольных ядрах, так и в боковых цепях. Кроме того, эти конденсированные системы также включают гетероциклические кольца, содержащие кислород, азот и серу [8, с. 62.  [c.147]

    В настоящее время довольно часто прибегают к изучению инфракрасных спектров сложных смесей высокомолекулярных соединений. Такой спектральный анализ позволяет делать вывод о присутствии в этих смесях соединений, содержащих группы С=0, СНд, ОН, ЗН, С=С ароматическую, С—О—С, различные типы олефиновых связей С = С [106—119]. Часто спектры используют для суждения о характере химических изменений вещества, например смазочного масла, во время эксплуатации [132, 133]. Во многих случаях авторам удается сделать количественную оценку содержания тех или иных групп атомов в молекуле. [c.238]


    Нефть и нефтяные остатки (так же, как и другие жидкие нефтепродукты) могут содержать следующие углеводороды не склонные при данных условиях к процессам ассоциации (низкомолекулярные углеводороды, углеводороды, имеющие пространственные затруднения) способные к межмолекулярным взаимодействиям с образованием только ассоциатов (нормальные парафиновые углеводороды) высокомолекулярные соединения, склонные к образованию ассоциатов и комплексов (смолы, полициклические ароматические углеводороды, асфальтены). [c.32]

    Коэффициент светопоглощения нефти зависит от содержания в ней ароматических углеводородов, которые входят в состав высокомолекулярных соединений. Увеличение коэффициента светопоглощения растворов нефти с уменьшением толщины эффективного гра1 ичкого слоя указывает на возрастание в нем смол и асфальтенов по мере приближения к твердой фазе. [c.110]

    В нефтяных системах могут присутствовать высокомолекулярные соединения, имеющие регулярную (парафины — линейную, конденсированные ароматические углеводороды — пластинчатую) и пространственную (асфальтены остаточного происхождения) структуры, склонные к межмолекулярным взаимодействиям. [c.36]

    Применяя эти суждения для сложных смесей, содержащих парафиновые и ароматические углеводороды, следует предположить, что высокомолекулярные соединения типа смолы, асфальтенов не имеют термодинамического запрета против образования низкомолекулярных продуктов (газообразных и жидких), а также высококонденсированных продуктов (типа карбенов и карбоидов), обладающих меньшим запасом энергии, чем молекулы исходного сырья. [c.157]

    С. Р. Сергиенко [215] пришел к выводу, что структуры высокомолекулярных соединений нефтей по своей форме не являются ни линейными, ни разветвленными и ввел новое понятие о гроздьевидной структуре, в которой возможны различные сочетания алифатических, нафтеновых и ароматических структур как углеводородных, так и неуглеводородных (гетероорганичес-ких). [c.15]

    Показано, что МСС можно рассматривать как статистический ансамбль квазичастиц (псевдокомпонентов), средние энергетические характеристики молекулярных орбиталей которых определяют реакционную способность, термостойкость и другие свойства. Химическая активность нефтяных систем обусловлена особыми квазичастицами, включающими в определенной статистической пропорции все компоненты системы. Реакционная способность системы в целом обусловлена характеристиками электронной структуры этих частиц. Для углеводородных систем можно эмпирически определить параметры реакционной способности. Предложены способы определения энергии этих псевдомолекулярных орбиталей, основанные на установленной взаимосвязи интефальных показателей поглощения молекул органических соединений с их усредненными по составу эффективным потенциалом ионизации (ПИ) и сродством к электрону (СЗ). Установлено, что энергии псевдомолекулярных фаничных орбиталей определяют реакционную способность МСС в процессах полимеризации и олигомеризации, реакционную способность ароматических фракций в процессах карбонизации, растворимость асфальтенов. Исследованы эффективные СЭ и ПИ высокомолекулярных соединений и различных фракций, в том числе асфальто-смолистых веществ (АСВ). Доказана повышенная электронодонорная и элекфоноакцепторная способность последних. На основе представлений о поливариантности химических взаимодействий в многокомпонентных системах и образования [c.223]

    Характеризуя особенности высокомолекулярных соединений нефти, мы все время имели в виду нативные, т. е. химически неизменные соединения, находящиеся в сырой нефти, а не вещества, выделяемые из различных продуктов ее переработки. Это обстоятельство должно быть особо подчеркнуто, так как оно имеет принципиальное значение. Практика переработки нефти показала, что при термическом воздействии на нефть интенсивно идут процессы крекинга и уплотнения исходного материала [6—8]. Например, при пиролизе керосиновой фракции нефти (т. кип. 180—300° С) образуются значительные количества конденсированных систем ароматических углеводородов (нафталин, антрацен, фенантренидр.). Между тем в исходном керосине эти структуры отсутствуют, или встречаются в крайне незначительных количествах преимущественно гомологи нафталина. [c.14]

    Алкиленкарбонаты (циклические эфиры угольной кислоты и гликолей) в последние годы нашли широкое промышленное использование в качестве эффективных растворителей высокомолекулярных соединений, экстрагентов ароматических углеводородов и как исходные продукты для некоторых синтезов. Алкиленкарбонаты (в основном этилен- и пропиленкарбонат) производятся в промыш-ленно.м масштабе в США, ФРГ, Японии. [c.271]

    Несмотря на родственную химическую природу, асфальтены . представляющие более высокомолекулярные соединения, выделены в отдельную группу из-за их нерастворимости в отличие от смол в углеводородах метанового ряда. Асфальтены хорошо растворимы в ароматических растчорителях, но при введении в раствор достаточного количества парафиновых углеводородов происходит их коагуляция и выпадение из раствора. Без наличия третьего компонента, препятствующего коагуляции асфальтенов, так называемого дефлоку-лянта, асфальтены в смеси парафиновых и ароматических углеводородов с незначительным содержанием последних (менее 20%) образуют неустойчивые коллоидные растворы. Причем, как показали исследования [4, 5, б], дисперс- [c.14]

    Известно,что нефть является одним из основных видов нефтехимического сьфья. Из всех углеводородов наибольшее распространение в качестве сырья получили ароматические углеводороды. В последнее время получают развитие исследования по вовлечению в качестве нефтехимического сырья смолисто-асфальтеновые компоненты нефти. Несомненно, использование для этих целей высокомолекулярных соединений нефти, содержащих малоизученные ещё ароматические гетероциклические соединения, явится новым крупным сьфьевым источником для нефтехимического синтеза. Уже первые работы, выполненные в ЛТИ им.Ленсовета, дали чрезвычайно интересные результаты 112 3.  [c.105]

    К таким промышленно-технологическим процессам относятся производство остаточных смазочных масел и процесс глубокой вакуумной перегонки. В первом случае смолисто-асфальтеновые вещества осаждаются из вакуумного гудрона прп обработке последнего жидким пропаном. Получаемый при этом углеводородный рафпнат обрабатывается селективно действующими растворителя-лш, в результате чего из него удаляются нолпядерпые конденсированные ароматические углеводороды и некоторые другие группы соединений, присутствие которых ухудшает физико-химические и эксплуатационные свойства смазочных масел. Применение высокого вакуума при перегонке нефтей позволяет выделить из смеси высокомолекулярных соединений нефти углеводороды, выкипающие выше 500° С. Использование этих углеводородов в качестве сырья в процессах каталитического крекинга и гидрокре-кпнга позволяет значительно повысить выходы из нефти автомобильных бензинов, авиационных керосинов и дизельных топлив и значительно повысить степень использования потенциально содержащихся в нефти углеводородов. [c.244]

    Следовательно, чем более жесткому и длительному термическому воздействию подвергаются нефть и нефтепродукты, тем меньше остается в их составе гроздьевидпых высокомолекулярных соединений с изолированными кольцами и тем больше в них появляется конденсированных ароматических систем. Этим и объясняется наличие существенных противоречий между данными разных исследователей, изучавших состав одних и тех же нефтей, но разными способами выделявших высококипящие фракции (выше 300° С) — ири воздействии высоких температур на исходную нефть или без их применения. [c.15]

    Большой принципиальный научный и практический интерес представляет решение вопроса о том, какие же высокомолекулярные конденспрованные ароматические системы присутствуют в сырых нефтях, каковы их свойства и эволюция в процессах переработки нефти. Здесь речь идет о таких высококонденсированных циклических углеводородах, в которых преобладают ароматические кольца в виде конденсированных структур, а доля алифатических атомов углерода незначительна. Соединения такого строения, если и присутствуют в сырых нефтях, то лишь в весьма небольших концентрациях. Поэтому нет ничего удивительного в том, что сведения о подобных соединениях крайне скудны. [c.261]

    Так же как среди нефтяных кислот преобладают соединения, молекулы которых содержат пятичленное карбоциклическое кольцо, среди высокомолекулярных сераорганических соединений нефти главную роль играют, по-видимому, ди- и полициклические системы, содержаище в конденсированном ядре пятичленное гетероциклическое кольцо (тиофеновое или тиофановое) и, по крайней мере, одно ародгатическое (бензольное, или нафталиновое) ядро. Большой экспериментальный материал, накопленный в нашей лаборатории и в лабораториях других [исследователей в результате изучения химической природы высокомолекулярной части нефтей, не подвергавшихся воздействию высоких температур, свидетельствует о том, что максимальное количество серы всегда содержится в тех фракциях углеводородов, в которых сконцентрированы ароматические соединения, имеющие в молекуле конденсированные циклические структуры. В ароматических же соединениях относящихся к гомологам бензола, 1. е. содержащих изолированные бензольные кольца, серы значительно меньше (в 2—3 раза), чем в ароматических соединениях с конденсированными циклическими структурами. Все эти данные свидетельствуют о том, что главная часть серы высокомолекулярных соединений нефти является циклической, -входящей в состав таких циклических конденсированных структур, как бензтиофеп (I), дибензтиофен (II) и, возможно, нафтотиофен (III)  [c.344]

    Полученные в нашей лаборатории данные но избирательному гидрированию высокомолекулярных конденсированных ароматических соединений из ромашкинской нефти, содержащих 4,4% 8, показывают с несомненностью, что основная часть серы входит в состав гетероциклов. При полном удалении серы общее количество колец на молекулу снижалось в среднем на 1,6 (с 4,8 до 3,2). Условия гидрирования исключали возможность крекинга, т. е. разрыва С — С-связей. Исследование методом ультрафиолетовой спектроскопии фракций, полученных при хроматографическом разделении на окиси алюминия отбензиненной нефти месторождения Вассон (Тексас) [511, показало, что сернистые соединения в отбензиненной нефти (выше 150° С) составляют не менее 15%, причем на долю гомологов тиофена (бензтиофены, дибензтиофены и тиофеннафталины) приходится около 70%. Эти исследователи также подчеркивают, что наиболее высокое содержание серы (4,73—6,11%) приходится на фракцию с конденсированными ароматическими структурами. В гомологах бензола содержалось всего 0,86% 8, причем она почти поровну распределялась между тиофеновой и сульфидной серой. [c.346]

    Вследствие меньшей прочности связей в сопряженных конденсированных системах Саром—Салиф (294—378 кДж/мрль) и Салиф Салиф (294—315 кДж/моль) по сравнению со связью Саром—Саром (432 кДж/моль), при термодеструкции в молекулах полициклических ароматических углеводородов, смол и асфальтенов в первую очередь распадаются боковые и соединительные цепи. Возможен также распад высокомолекулярных соединений из-за разрушения нафтеновых колец (310 кДж/моль). [c.163]

    При компаупдпрованпп компонентов, содержащих в своем составе высокомолекулярные соединения (асфальте[1ы, смолы, полициклические ароматические углеводороды, парафины), во-п юсы регулирования ММВ п фазовых переходов, устойчивости НДС к расслоению становятся основными. При смешении различных компонентов и получении нефтепродуктов (котельные, печные, судовые и газотурбинные топ. шва, флотские мазуты, профилактические и пластические смазки, битумы, пеки, связующие вещества и др.) уже при обычных температурах формируются ССЕ, которые существенно влияют па физико-химические свойства НДС. [c.207]

    Вследствие меньшей прочности связей Саром — Салиф (70 ккал/моль) и Салиф — Салиф (71,0 ккзл/моль) ПО сравнению СО связью Саром — Саром (ЮЗ ккал/моль) при крекинге в первую очередь распадаются боковые и соединительные цепочки в молекулах смол и асфальтенов, в результате чего сложные молекулы расчленяются на структурные звенья, из которых в дальнейшем образуются новые продукты. Возможен также распад высокомолекулярных соединений в результате разрушения нафтеновых колец. Исчезновение алифатических цепочек в структуре составляющих остатка должно привести к его уплотнению. Одной из причин уплотнения молекул является уменьшение расстояния между атомными группировками. Так, по данным [190], это расстояние в алифатической цепи наибольшее—1,54 А, в олефиновой цепи и ароматическом кольце оно составляет соответственно только 1,34 и 1,39 А, [c.85]

    Несмотря на то, что применение смолисто-асфальтеновых веществ (САВ) известно более ста лет, настоящий этап характеризуется значительными и возрастающими успехами [147, 148]. Ранее было известно, что они могут быть использованы для производства битумов, разновидностей нефтяного углерода, природных депрессаторов, для изоляции трубопроводов. Все эти области не учитывали специфических особенностей, разнообразных и ценных свойств САВ. В 1936 г. Черножуковым и Крейном была показана стабилизирующая роль САВ в окислении минеральных масел. Более поздними работами была выявлена стабилизирующая способность асфальтенов в процессах термо- и фотодеструкции, окисления углеводородов и синтетических полимеров [149—150]. Ингибирующими центрами САВ являются гетероатомы и функциональные группы, имеющие подвижный атом водорода (гидроксипроизвод-ные ароматических фрагментов, аминные и серусодержащие компоненты). Ингибирующая способность высокомолекулярных соединений нефти повышается с ростом их общей ароматичности, концентрации гетероатомов и функциональных групп. В зависимости от этих факторов константа скорости ингибирования может изменяться в широких пределах от ж 10 до 10 л/(моль-с). Ингибирующая активность асфальтенов на 1—2 порядка выше, чем смол. [c.347]

    При жидкофазной гидрогенизации углей в температурном интервале 300—500 °С происходит разрушение сложной матрицы угля, сопровождающееся разрывом химических связей и образованием активных свободных радикалов. Последние, стабилизируясь водородом, образуют молекулы меньшего размера, чем исходные макромолекулы. Рекомбинация свободных радикалов приводит также к образованию высокомолекулярных соединений [74]. Водород, необходимый для стабилизации радикалов, частично обеспечивается за счет применения растворителей — доноров водорода. Это — соединения, которые, взаимодействуя с углем, при высоких температурах дегидрируются, выделяющийся при этом атомарный водород присоединяется к продуктам деструкции угля. Растворитель-донор водорода является также пастообразователем. Чтобы находиться в условиях гидрогенизационного процесса в жидкой фазе, он должен иметь температуру кипения выше 260°С. Хорошими водо-родно-донорными свойствами обладают конденсированные ароматические соединения, прежде всего тетралин. Более высо-кокипящие соединения этой группы (нафталин и крезол) менее активны, но при их смешении с тетралином возникает эффект синергизма смесь равных частей тетралина и крезола обладает более высокой донорной способностью, чем каждый в отдельности [70]. [c.72]


Смотреть страницы где упоминается термин Высокомолекулярные соединения ароматические: [c.327]    [c.353]    [c.11]    [c.29]    [c.265]    [c.93]    [c.265]    [c.115]    [c.203]    [c.259]    [c.293]    [c.434]    [c.448]    [c.11]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.164 , c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2025 chem21.info Реклама на сайте