Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масляная фракция метод разделения

    Химический состав фракций нефти, перегоняющейся выше 300 °С, очень сложен. Помимо высокомолекулярных (в основном, гибридных) углеводородов в масляных фракциях присутствуют кислородные, сернистые и смолистые вещества, а также твердые парафины. Комбинируя различные способы разделения, прежде всего отделяют твердые парафины и смолистые вещества. Дальнейшее разделение на более узкие фракции возможно путем вакуумной разгонки, адсорбции на различных сорбентах и другими методами. Полученные тем или иным путем узкие фракции подвергают затем детальному исследованию. Определяют их элементарный состав, молекулярную массу, плотность, показатель преломления, вязкость, анилиновую точку, температуру застывания. Рассчитывают удельную рефракцию и интерцепт- рефракции. По молекулярной массе и элементному составу выводят эмпирические формулы углеводородных рядов. [c.68]


    Физические методы очистки масел предусматривают разделение масляной фракции на две части без изменения химического строения углеводородов исходного сырья. [c.208]

    Монография состоит из двух частей. В первой части приведены химический состав масляных фракций нефтей и физико-химические методы их разделения п исследования во второй части даны физико-химические основы получения нефтяных масел и возможные пути интенсификации процессов их производства. [c.304]

    Жидкостная адсорбционная хроматография. Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алкано-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняют силикагелем или двойным адсорбентом — оксидом алюминия и силикагелем. В качестве десорбентов при анализе керосиновых и масляных фракций для вымывания насыщенных углеводородов используют н-алканы С5 — С7, для десорбции ароматических и гетероатомных компонентов — бензол, спиртобензольные смеси, ацетон, хлороформ. Применение ступенчатого или непрерывного увеличения полярности подвижной фазы позволяет значительно уменьшить время удерживания веществ. Этот метод называется градиентным элюированием. [c.130]

    Депарафинизации методом охлаждения в различных растворителях подвергают только масляные фракции. После разделения охлажденной смеси твердых и жидких углеводородов получают раствор депарафинированного масла и смесь твердых углеводородов с примесью растворов жидких компонентов. При депарафи- [c.176]

    Г. И. Кичкин и А. с Великовский [И ] предложили для выделения ароматических углеводородов из сераорганических концентратов керосиновых и масляных фракций метод окисления перекисью водорода с последующим разделением на силикагеле. Метод окисления сераорганических соединений перекисью водорода использован также в работах В. Г. Николаевой с соавторами [3], Л. А. Мухамедовой с соавторами [41, И. Бестужева [c.37]

    Адсорбционная колонка (рис. 135) служит для разделения масляных фракций на отдельные группы углеводородов. Метод основан на различной поглотительной способности адсорбента — силикагеля с веществом различного химического состава. [c.81]

    В настоящее время экстракция и экстрактивная ректификация редко используются при разделении нефтяных фракций с целью последующего их анализа, однако широкое применение эти методы нашли в нефтепереработке и нефтехимии. Экстракцией в промышленности выделяют бензол, толуол и ксилолы из катализатов рифор-минга бензиновых фракций, проводят селективную очистку масляных фракций, деароматизацию реактивных топлив. Предполагается также экстрактивная очистка жидких нормальных алканов от примесей аренов, выделение сульфидов и т. д. [c.30]


    Метод адсорбционного разделения масляных фракций основан на различной поглотительной способности адсорбента по отношению к веществам различного химического состава. В качестве адсорбента применяют силикагель марки АС, в качестве растворителя — нефтяную фракцию, выкипающую в пределе температур 60—80° С. Нефтепродукт, разбавленный растворителем, заливают в бюретку, заполненную адсорбентом, затем последовательно подают алкилат бензол, спирто-бензольную смесь, вытесняющую постепенно наиболее слабо адсорбированные углеводороды. [c.191]

    В качестве адсорбентов (как правило, в адсорбционной газовой хроматографии) при разделении углеводородных систем применяются также графитированная сажа, цеолиты, пористые полимеры, гидроксиды и соли металлов. Иногда эти адсорбенты используются и для разделения углеводородов методом жидкостной колоночной хроматографии. Так, с помощью цеолитов ЫаХ и СаХ арены, полученные при экстракции масляных фракций фенолом, разделялись на три фракции в соответствии с размерами молекул. [90]. [c.64]

    Таким образом, рассмотренные методы исследования в сочетании с хроматографическим разделением нефтяных фракций на адсорбентах, а также фракционировкой тяжелых фракций в глубоком вакууме, фракционировкой селективными растворителями, использованием избирательной склонности к комплексооб-разованию различных групп углеводородов с карбамидом и т. д. и т. п., дополняя друг друга, дают известную, пока все еще весьма ориентировочную картину химического состава масляных фракций. [c.9]

    Под термином "масла принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. В их состав входят парафиновые, циклопарафиновые и ароматические структуры в разнообразных комбинациях. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклнческие), средние (бициклические) и полициклические (три и > циклические). Наиболее важное значение имеют смолы и асфальтены, которые часто называют коксообразующими компонентами, поскольку они создают сложные технологические проблемы при переработке ТНО. Смолы - плоскоконденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенных посредством алифатических структур. Установлено, что асфальтены в отличие от смол образуют пространственные в большей степени конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным признакам, как растворимость в низкомолекулярных алканах, соотношение С Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности  [c.56]

    В последнее время применение хроматографического метода разделения нефтяных фракций расширило возможность их исследования. Однако в основном эти исследования подтвердили все сказанное выше в отношении состава нафтеновых углеводородов масляных фракций нефтей. [c.12]

    Сернистые соединения масляных фракций вымываются с поверхности адсорбента вместе с ароматическими углеводородами и смолами, и отделение их от последних методами адсорбционного разделения затруднено. [c.243]

    В нефтях и нативных ТНО (т.е. не подвергнутых термодеструктивному воздействию) карбены и карбоиды отсутствуют. Под термином масла принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в т.ч. легкие (моноциклические), средние (бициклические) и полициклические (три и более циклические). Наиболее важное значение представляют смолы и асфальтены, которые часто называют [c.88]

    Во ВНИИНП разработан ускоренный адсорбционно-хроматографический метод определения группового углеводородного состава керосиновых, газойлевых и масляных фракций нефти [157]. Хроматографическое разделение образца проводится в колонке с силикагелем. Десорбция алканов и циклоалканов проводится петролейным эфиром или изооктаном. Начало элюирования аренов устанавливается с помощью формолитовой реакции. Для десорбции конденсированных аренов и смол в качестве растворителей используются бензол и спирто-бензольная смесь. После отгонки растворителей показатель преломления алкано-циклоалкановой фракции не должен превышать 1,4750—1,4800, а для фракции аренов > 1,5100- [c.130]

    Разделение нефтяных фракций адсорбционной хроматографией на силикагеле показало эффективность этого метода для удаления аренов из бензиновой и керосиновой фракций. Достаточно четко разделяется масляная фракция и получаются де-ароматизированные фракции, арены с различным средним числом циклов в молекулах (от 2 до 3,5) и смолы. В качестве растворителей и десорбентов углеводородов использовались петролейный эфир или индивидуальные углеводороды (изопентан, гептан, изооктан), а смолы десорбируются метилэтилкетоном или ацетоном. [c.32]


    Образцы продуктов получены гидрированием на полузавод-окой установке в реакторе объемом 60 м . Гидрогенизат перерабатывался по схеме, приведенной ранее (см. рис. 1). Исследовались и сопоставлялись компоненты масляных фракций, после разделения их методом хроматографии, полученные в результате гидрирования и выделенные из исходного сырья, т. е. характерные для состава масляных фракций селективной очистки. [c.299]

    Исследования, выполненные с использованием метода ЭПР, показали, что стабильные свободные радикалы Нрисутствуют в остаточных и некоторых дистиллятных маслах, в смолистой части реактивных топлив. Они образуются в масле в процессе работы двигателя, причем источником образования свободяых радикалов служат ароматические углеводороды. Так, исследования масляных фракций 325—350, 350—375 и 375—400°С, вЦ деленных из бузовнинской нефти и разделенных на силикагёлё на нафтено-парафиновую и ароматическую части, показали, что в последней присутствуют свободные радикалы в количестве (1-ь2,7)10 в 1 г. В нафтено-парафиновых частях их не содержалось. При окислении выделенных фракций в стеклянных аь -пулах, запаянных с кислородом (250 °.С), наблюдалось увеличение содержания свободных радикалов в ароматической части. [c.43]

    Второй метод основан на разделении масляной фракции на со-ч тавляющие классы углеводородов настолько полно, насколько это возможно. Для этого используются в надлежащей последовательности все имеющиеся физические методы перегонка под вакуумом, адсорбция, карбамидная очистка, экстракция растворителями, термическая диффузия. [c.26]

    Экстракция водным раствором метанола 1214, 217—219, 222, 225, 233, 234, 2391, известная под названием метод Метасольван, является чисто физическим процессом. В качестве растворителя применяется водный раствор метанола (70—80 вес. %). Увеличение концентрации метанола повышает растворимость, но снижает избирательность экстракции, кроме того уменьшается разность плотностей метаноловой и масляной фракций, что затрудняет разделение фаз. Кроме фенола, в растворе метанола растворяется еще и некоторое количество компонентов масла (до 20%), которые невозможно отделить путем дистилляции. Чтобы уменьшить содержание этих масел, к метанолу добавляют еще так называемые вспомогательные растворители либо ими промывают ме-таноловую фракцию. Эффективными оказались насыщенные углеводороды с низкими температурами кипения, например гексан, относительно легкие фракции (60—100 Т.), полученные из нефтяного газолина, из продуктов синтеза Фишера—Тропша и даже из жидких продуктов сухой перегонки. Так как из масел при контакте с метаиолом выделяются хлопьевидные осадки, для экстракции пользуются только механическими колоннами [233, 239] или установками типа мешалка—отстойник. [c.416]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Исследование ароматических углеводородов масляных фракций усложняется тем, что им всегда сопутствует большее или меньшее количество сероорганических соединений. Во фракциях ароматических углеводородов, выделенных из масляных дистиллятов или остатков даже так называемых бесоернистых нефтей, всегда содержатся эти соединения их тем больше, чем выше среднее число ароматических циклов в углеводородах, составляющих ароматическую фракцию. Обычный путь разделения нефтяных фракций на силикагеле или активной окиси алк>миния, позволяющий достаточно полно отделить нафтено-парафиновую часть нефтяной фракции от ароматической или с известным приближением разделить ароматические углеводороды друг от друга по числу колец в молекуле, большей частью неприменим для отделения ароматических углеводородов от сопутствующих им серосодержащих соединений. При разделении по этому методу сернистые производные даже неароматических углеводородов, т. е. содержащие алкильные или ацильные радикалы, попадают в аро- [c.17]

    Исследование тех же франций при помощи масс-спектромет-рии показало, что ароматические углеводороды с высоким ИВ (фракция 1) содержат свыше 40% алкилбензолов. Остальные углеводороды (более 50%) являются нафтено-ароматическими, в которых бензольное кольцо сконденсировано с одним или двумя нафтеновыми. С понижением ИВ содержание алкилбензолов уменьшается до 27,9% и возрастает содержание производных бензола с 1—4 нафтеновыми кольцами. Строение парафиновых цепей ароматических углеводородов определяли после гидрирования исследуемых франций определялись ИК-опектры поглощения в области 700—900 см . Результаты исследования П01казали, что высокоиндексные ароматические углеводороды можно отнести к по-лизамещенным производным бензола, содержащим 1—2 длинные и несколько коротких цепей. У углеводородов с низким индексом вязкости (особенно с отрицательным) больше коротких цепей и значительно больше нафтеновых колец. Таким образом, сочетая современные методы разделения и анализа, можно составить достаточно полное представление о химическом составе ароматических углеводородов, входящих в масляные фракции. [c.20]

    Вследствие значительного содержания в масляных фракциях П0лицикл1ических нафтеновых углевюдородов базовые дистиллятные масла, полученные методом адсорбционного разделения без депарафинизации, имеют низкие индексы вязкости. [c.617]

    С целью преодоления этих трудностей предложен метод разделения с использованием жидких мембран, основанный на избирательном прохождении компонентов смеси через пленку, образованную поверхностно-активными вещестнамн иа иоверхиости раздела фаз масло — вода. Таким методом мо] ут быть выделены, например, арены из смеси с насыщенными углеводородами. Арены проникают через мембрану с больщей скоростью и концентрируются в растворителе— масляной фракции, а насыщенные углеводороды остаются в водной эмульсии. [c.80]

    Методы разделения и онределения (подержания различных груни смолисто-асфальтовых соединений, основанные на их различной растворимости в разных растворителях, так же как и отделение сиолисто-ас-фальтовых веществ от углеводородов различными адсорбентами или серной кислотой, несмотря на широкое распространение, имеют существенные недостатки. О недостатках сернокислотного (акцизного) способа онределения содержания смолисто-асфальтовых веществ будет сказано ниже ( 4, раздел Б). При определении смолисто-асфальтовых веществ осаждением ацетоном [212] получается завышенное их содержание вследствие ни-что кно малой растворимости в кетонах (в частности, ацетоне) твердых углеиодородов парафинового ряда и высоко индексных углеводородов масляных фракций. [c.465]

    Первые успешные работы по разделению нефтяных фракций адсорбционной хроматографией на силикагеле показали эффективность этого метода для удаления аренов из бензиновой и керосиновой фракций [71], и для маслянь1х фракций и гудронов [72]. В последней работе удалось достаточно четко разделить масляную фракцию нафталанской нефти и получить деаромати-зированные фракции, арены с различным средним числом циклов в молекулах от 2 до 3,5 и смолы. В качестве растворителей и десорбентов углеводородов использовались петролейный эфир или индивидуальные углеводороды (изопентан, гептан, изооктан), а смолы десорбировали метилэтилкетоном или ацетоном. [c.60]

    Коагуляционные методы. Эти методы основаны на избирательном осаждении компонентов при использовании соответствующих растворителей. Разделение нефтяных остатков (компонентный анализ) на три фракции можно проводить бутанолом и ацетоном. В данном методе предусматривается детальное разделение масляной фракции на циклические.(растворимые в бутаноле и нерастворимые в ацетоне) и алкановые (нерастворимые в обоих используемых агентах) углеводороды. На первом этапе фракционирова-1 ния асфальтены и смолы осаждаются бутанолом совместно, и их дальнейшего разделения не проводится. [c.104]

    Пикратным методом с последующим хроматографическим разделением на оксиде алюминия продуктов, образующих комплекс с пикриновой кислотой, выделены из масляной фракции кувейтской нефти 1,8-диметил- и 1,2,8-триметилфенантрен, 1-метилпирен, 1,2-бензофлуорен и 8-метил-1,2-бензофлуорен [95]. В качестве сырья при этом использовались 2,5-градусные фракции, полученные после удаления гомологов антрацена в виде комплексов с малеиновым ангидридом. [c.227]

    Несмотря на то, что метод хроматографии широко применяется в лабораторной технике анализа масляных фракций, существует еще много вопросов, связанных с подбором растворителей и адсорбентов, которые не позволяют считать технику такого разделения совершенной. Необходимо отметить, что громадное разнообразие типов содержащихся в маслах соединений весьма осложняет проблему разделения углеводородов. К. Ван-Нес и X. Ван-Вестен [76] полагают невероятным, чтобы применением хроматографии масляные фракции удалось разделить на индивидуальные углеводороды. [c.244]

    Исключительную ценность имеет статическое термодиффузионное разделение жидких смесей как метод анализа сложных углеводородных фракций, в частности высокомолекулярных [27—29]. Поскольку термодиффузионпое разделение основывается па различии формы молекул, этот процесс идеально применим для определения структур, содержащихся в сложных смесях. Было исследовано [12] разделение в одиночной статической колонне описанного выше типа трех масляных фракций, а именно мидконтинепт-ского нейтрального дистиллята, его фурфурольного экстракта и рафината. [c.36]

    При анализе масляных фракций и смолисто-асфальтеновых составляющих нефтей удается идентифицировать пока лишь некоторые индивидуальные соединения. Групповое разделение этих фракций, включающих гибридные тpyкtypы, — также достаточно сложная и не вполне решенная задача. С использованием масс-спектроскопии, ЯМР-спектроскопии и других современных методов проводят структурно-групповой анализ высокомолекулярных нефтяных фракций определяют содержание углерода в алифатических, алициклических и ароматических структурах, содержание водорода в водородсодержащих фрагментах, среднее число ароматических и насыщенных колец и т. д. [c.111]

    Исследования группового химического состава масляных фракций осуществляются с использованием физических, химических и физнщ ческих методов разделения масляных фракций и идентификации химического строения молекул. Разделение масел на узкие фракции осуществляется вакуумной перегонкой, холод-ньпи фракционированием, хроматографией, комплексо-образованием, термической диффузией и др. методами. При исследовании структуры молекул узких фракций масел применяются ИК-, УФ-, маес-спектроскопия, ЯМР, парамагнитный р нанс, термо- и дериватогра-фия и др. методы. [c.705]

    В нефтях и нативных ТНО (т. е. не подвергнутых термодеструктивному воздействию) карбены и карбоиды отсутствуют. Под термином "масла" принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300-500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в т. ч. легкие (моноциклические), средние (бициклические) и полициклические (три и более циклические). Наиболее важное значение представляют смолы и асфальтены, которые часто называют коксообразующими компонентами, и создают сложные технологические проблемы при переработке ТНО. Смолы — вязкие малоподвижные жидкости или аморфные твердые тела от темно-коричневого до темно-бурого цвета с плотностью около единицы или несколько больше. Они представляют собой плоскоконденсированные системы, содержащие пять-шесть колец ароматического, нафтенового и гетероциклического строения, соединенные посредством алифатических структур. Асфальтены — аморфные, но кристаллоподобной структуры твердые тела темно-бурого или черного цвета с плотностью несколько больше единицы. При нагревании не плавятся, а переходят в пластическое состояние при температуре около 300 °С, а при более высокой температуре разлагаются с образованием газообразных и жидких веществ и твердого остатка — кокса. Они в отличие от смол образуют пространственные в большей степени конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным показателям, как растворимость в низкомолекулярных алканах, отношение С Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности  [c.46]

    В настоящее время в процессе фильтрования сочетают избирательную адсорбцию с последующей десорбцией различными растворителями. Подбирая соответствующие растворители и условия процесса, можно разделить масляную фракцию на однородные или близкие по углеводородному составу группы, например группы много- и малоядерных ароматических углеводородов, циклано-алкановую группу. В таком виде метод получил допол-нпте.льное название хроматографического метода очистки и разделения сложных смесей. [c.301]

    Для сравнительных контрольных определений содержания групп парафино-нафтеновых, ароматических углеводородов и гетероатом-ных соединений в различных нефтепродуктах может быть рекомендован метод микрохроматографии, масштаб разделения которого ограничен количествами пробы до 100 мг) и адсорбента, общим объемом растворителей, количеством и объемом обрабатываемых фракций элюата. Данный метод детально разработан для прямогонных нефтяных фракций с началом кипения 150, 250 °С и выше и масляных фракций [31 ]. При этом отгонку растворителей (петролейный эфир, бен-,зол, этанол) от фракций элюата углеводородов с началом кипения 150 °С авторы данного метода достаточно полно осуществляют только при создании минусовой температуры (—25 °С) в зоне охлаждения микроректификационных ячеек-приемников. [c.18]

    При разделении масляных фракций по групповому составу экстракцией или адсорбцией сернистые соединения всегда выделяются вместе с ароматическими углеводородами. Для их разделения можно применить окисление перекисью водорода (метод Гинзбурга) сернистых соединений до сульфонов и сульфоксидов. [c.197]


Смотреть страницы где упоминается термин Масляная фракция метод разделения: [c.101]    [c.9]    [c.11]    [c.22]    [c.163]    [c.30]    [c.47]   
Углеводороды нефти (1957) -- [ c.312 , c.315 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Разделение фракции



© 2025 chem21.info Реклама на сайте