Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические свойства молибдена и вольфрама

    Таким образом, можно ввести понятие о полной и неполной электронной аналогии. Полными электронными аналогами называются элементы, которые имеют сходное электронное строение во всех степенях окисления, чем и определяется близкое подобие их химических свойств. Например, в рассматриваемой VI группе периодической системы полными электронными аналогами являются кислород и сера [01 [He] 2s 2p [S] [Ne] Зs Зp селен, теллур и полоний [Se] [A V><3d s4p - [Te] >nKr] 4d >5s 5p [Ро] [XeVЧf 5d %sЩp а также хром, молибден и вольфрам [Сг] [Ar] 3d 4s [Мо] [Kr] 4d 5si [Wl [Xe] 4f Sd 6s . У полония и вольфрама [c.11]


    В V периоде элемент IV группы — цирконий — непосредственно следует за элементом П1 группы —. иттрием, а в VI пер1Иоде между элементом III группы — лантаном — и элементом IV группы — гафнием — вклиии-вается длииный ряд лантанидов. У лантанидов происходит достройка электродами третьего снаружи электронного слоя. С возрастанием за1ряда атомного ядра у них электронные оболочки все более стягиваются к ядру, и радиус атома уменьшается (табл. 13). Из-за этого, и у элементов, следующих за лантанидами, атомные радиусы оказываются относительно малым и близкими к атомным радиусам соответствующих элементов V периода. Сходство строения атомов здесь дополняется близостью. их радиусов. Поэтому и по химическим свойствам элементы цирконий и гаф,ний, ниобий и тантал, молибден и вольфрам и т. д. оказываются попарно чрезвычайно сходными. [c.152]

    Таким образом, можно ввести представление о полной и неполной электронной аналогии. Полными электронными аналогами называются элементы, которые имеют сходное электронное строение во всех степенях окисления, чем и объясняется близкое подобие их химических свойств. Например, в рассматриваемой VI группе Периодической системы полными электронными аналогами являются кислород и сера [О] — [ У28 2р [8] — [Ке] 03823р , селен, теллур и полоний [8е]34 [Аг]183 104524р4 [Те]52 - [Щ Чё Ъз Ър -, [Ро] - [Хе] Ч Ъ %8Чр, а также хром, молибден и вольфрам [Сг] — [Аг]> 3< 4 1 [Мо] 2 — [Кг]з 4 [ У] — [Хе]5 4/ 5(/ бв2 У полония и вольфрама в отличие от остальных элементов присутствует внутренняя завершенная 4/оболочка, наличие которой проявляется в лантаноидном сжатии. Поскольку 4/юболочка располагается глубоко, она мало влияет на свойства и не нарушает з арактер электронной аналогии. Атомы типических элементов — кислорода и серы — по электронному строению отличаются как от атомов элементов подгруппы селена (в высшей степени окисления), так и от атомов элементов подгруппы хрома (во всех степенях окисления, кроме высшей). Это значит, что кислород и сера по отношению к остальным элементам [c.229]

    Химические свойства. Хром, молибден и вольфрам являются восстановителями восстановительная активность возрастает от вольфрама к хрому. [c.102]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]


    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]

    По физическим и химическим свойствам молибден и вольфрам похожи и несколько отличаются от хрома. Химическая активность металлов в ряду хром — молибден — вольфрам заметно понижается. [c.196]

    Свойства циркония и гафния и их соединений. Химические свойства циркония, гафния и их соединений очень близки. Сходство именно этих элементов наибольшее по сравнению с другими родственными парами (тантал — ниобий, вольфрам — молибден). Это объясняется тем, что вследствие лантаноидного сжатия радиусы атомов 2г и Н (соответственно 0,145 и 0,144 нм), а также радиусы ионов 2г + и Н + (0,074 и 0,075 нм) практически одинаковы, Ниже рассмотрены свойства этих элементов и некоторых их соединений. [c.132]

    По большинству физических и химических свойств молибден и вольфрам похожи между собой и несколько отличаются от хрома. [c.218]

    По своим химическим свойствам молибден скорее похож на вольфрам, чем на хром. [c.642]

    Хром, молибден и вольфрам похожи по многим физическим и химическим свойствам так, в виде простых веществ все они представляют собой тугоплавкие серебристо-белые металлы (т. пл. Сг==1855°, т. пл. Ао = = 2610°, т. пл. ==3380°), обладающие большой твердостью и рядом ценных механических свойств — способностью к прокатыванию, протягиванию, штамповке. [c.338]

    Область применения ВДП, однако, намного шире. Помимо стали в этих печах проводят плавку тугоплавких и в то же время химически высокоактивных металлов, которые настолько быстро окисляются на воздухе уже при 400—600° С, что их можно плавить лишь в вакууме. Эти металлы могут поглощать очень большое количество газов, которые существенно ухудшают их свойства, поэтому их нельзя плавить и в защитной атмосфере. Это в первую очередь титан, молибден, вольфрам, цирконий и их сплавы, а также тантал, ниобий, бериллий и др. Особенно большое распространение получила плавка в ВДП титана этот легкий и в то же время прочный и не боящийся коррозии металл получил большое распространение в авиа- [c.230]

    Химические свойства. В химическом отношении Мо и W являются восстановителями, но при обыкновенных условиях относительно устойчивы. Фтор с Мо и W взаимодействует энергично на холоду, кислород же — при нагревании. При нагревании молибден окисляется хлором, бромом и углеродом. Вольфрам непосредственно окисляется только хлором и то лишь при температуре красного каления. [c.329]

    Металлические и особенно ионные радиусы молибдена и вольфрама близки (табл. 34) вследствие лантаноидного сжатия. Поэтому молибден и вольфрам сходны по физическим и химическим свойствам, но существенно отличаются от хрома. При переходе от хрома к вольфраму восстановительная активность металлов несколько понижается. [c.416]

    Вольфрам и молибден, например, имея высокую температуру плавления и соответственно высокую прочность, не могут, однако, сохранить ее (выше 1400° С), так как легко окисляются в этих условиях. Следовательно, такое чисто физическое (механическое) свойство, как длительная прочность, не может быть обеспечено при отсутствии чисто химического свойства — жаростойкости. Этот пример наиболее ярко подчеркивает необходимость рассмотрения твердого состояния вещества с физико-химических позиций. [c.206]

    К d-металлам VI группы периодической системы Д. И. Менделеева относятся хром Сг, молибден Мо и вольфрам W. Близок к ним по химическим свойствам уран U, входящий в семейство актиноидов. [c.354]

    К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспоз1П1ИИ в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е при наличии на поверхности отложений. [c.160]

    По химическим свойствам вольфрам близок к молибдену. В элементарном состоянии это типичный металл. В соединениях он поливалентен. Металлические свойства его в соединениях падают с ростом ва- [c.222]


    Порядок расположения материала, относящегося к цветным и редким металлам, в основном соответствует порядковому номеру элемента в Периодической системе элементов Д. И. Менделеева элементы с близкими химическими свойствами (цирконий и гафний, ниобий и тантал, молибден и вольфрам) рассмотрены в одной главе. [c.4]

    Основные научные исследования относятся к неорганической химии. Изучил (1876—1879) полиморфизм окислов железа. Усовершенствовал (начало 1880-х) методы синтеза окислов хрома и изучал их свойства. Впервые получил (1886) фтор в свободном состоянии. Синтезировал все возможные фториды фосфора и фторпроизводные метана — первые представители фторорганических соединений. Исследовал (с 1892) тугоплавкие металлы и неорганические соединения при высоких температурах, став основателем химии твердого тела. Сконструировал (1892) и ввел в исследовательскую практику электроду-говые печи для изучения свойств твердого тела в области высоких температур. Синтезировал множество карбидов, боридов и силицидов металлов, изучил их механические, физические и химические свойства. Впервые синтезировал гидриды ряда металлов. Электротермическим путем получил в чистом виде молибден (1895), вольфрам (1897) и другие тугоплавкие металлы. Автор Курса минеральной химии (т, 1—5, 1904—1906). [c.346]

    Вольфрам — редкий поливалентный элемент. Известны соединения вольфрама с валентностью от 2+ до 6-[-. Наиболее характерными и устойчивыми являются соединения с 6-валентным вольфрамом. По химическим свойствам близок к молибдену. Среднее содержание его в земной коре 0,00013% [414]. [c.208]

    По химическим и коррозионным свойствам вольфрам имеет много общего с молибденом. Вольфрам в виде компактного металла устойчив по отношению к неокислительным кислотам, например к соляной, серной, фтористоводородной и кислым растворам фторидов. Также как молибден (хотя в меньшей степени), вольфрам склонен к перепассивации и поэтому коррозионно нестоек в кислых окислительных средах. В концентрированной горячей азотной кислоте вольфрам растворяется медленно, а в смеси азотной и фтористоводородной кислот при нагреве — быстро. Вольфрам, как молибден, стоек в многочисленных расплавах содей и металлов. [c.304]

    Химический состав, физические и механические свойства сплавов вольфрам—молибден приводятся ниже. [c.451]

    ХЛОРИРОВАНИЕ СОЕДИНЕНИЙ, СОДЕРЖАЩИХ ВОЛЬФРАМ, МОЛИБДЕН, РЕНИЙ, И НЕКОТОРЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА [c.49]

    По химическим свойствам вольфрам близок к молибдену. В элементарном состоянии он типичный металл. В соединениях поливалентен. Металлические свойства его падают с ростом валентности. Высший окисел вольфрама — кислотный ангидрид WOз низшие окислы имеют не ярко выраженный основной характер. Как и у молибдена, наиболее устойчивы соединения шестивалентного вольфрама. Среди соединений низшей валентности весьма прочен окисел четырехвалентного вольфрама ШОг. В водных растворах вольфрам присутствует в виде иона "04 или аниона изо-и гетерополисоединений. [c.300]

    Фи.эические и химические свойства. Хром, молибден и вольфрам отличаются высокой температурой илавления и большой твердостью. Значения физических свойств хрома, молибдена и вольфрама ириведены в табл. 19. [c.281]

    Металлы элементов У1Б группы тугоплавки, характеризуются пониженной химической активностью. По ряду Сг—Мо—химическая активность падает. С водородом эти металлы не взаимодействуют. Важнейшими производными хрома являются производные Сг (III) и Сг (VI), а молибдена и вольфрама — в степени окисления +6. Производные хрома (VI) — в кислой среде сильные окислители. Хроматы и особенно молибдаты и вольфраматы вступают в реакцию конденсации с образованием изополиоксо-соединений состава ЫагСгзОю, Ма2 зОю и т. п. Для Мо (VI) и Ш (VI) весьма характерно образование гетерополиоксоанионов. Для Сг и Мо очень характерно образование пероксосоединений. Соединения хрома (III) по химическим свойствам похожи на производные алюминия. Хром, молибден, вольфрам — важнейшие материалы современной техники. [c.531]

    Из этих примеров видно, что основным во всяком ионообменном процессе является подыскание подходящих условий разделег ния ионов. Сорбируемость ионов определяется положением соответствующих им элементов в периодической системе Д. И. Менделеева. Кроме расположения элементов по группам, для хроматографического разделения существенным является и принадлежность элементов к различным семействам по горизонтальному направлению (А. Е. Фep мaн) Таковы семейство железа, включающее элементы от титана до меди, семейство молибдена, включающее элементы от циркония до палладия, и семейство вольфрама, включающее элементы от тантала до платины и золота. Сходство химических свойств в горизонтальном направлении зависит от сходства в строении их электронных оболочек (заполнение электронами более глубоких слоев). Элементы, принадлежащие к различным семействам, например железо и молибден, ванадий и молибден, молибден и рений, ниобий и вольфрам и другие, можно разделять хроматографически, решая тем самым наиболее трудные задачи количественного анализа. [c.119]

    Все три элемента близки по химическим свойствам. Это относится, в частности, к поливалентности, способности образовывать изополи-и гетерополисоединения, проявлению как металлических, так и неметаллических свойств.Основные свойства окислов усиливаются от хрома к вольфраму. Хромовая кислота Н2СГО4 более сильная, чем вольфрамовая. Устойчивость соединений с низшей валентностью растет от вольфрама к хрому. Соединения Мо(У) более устойчивы, чем (V). Соединения Сг(П1) — ярко выраженные ионные соединения. Соединения (У) и Мо(У) почти не имеют ионного характера. Об этом, в частности, говорит их высокая летучесть. Молибден и вольфрам намного более способны образовывать изополи- и гетерополисоединения, чем хром. [c.159]

    Вольфрам образует соединения, близкие по химическим свойствам к соединениям молибдена. Так же как окись молибдена, 0з малоактивный катализатор для неполного окисления углеводородов. На рис. 91 (кривая 2) показано изменение работы выхода электрона смешанных вольфрам-висмутовых катализаторов различного состава. Смеси, содержащие 35—40% атомн. В1, увеличивают ф аналогично молибден-висмутовым контактам. На рис. 92 показана зависимость удельных констант скоростей образования акролеина, СО и СО., от состава катализатора. Селективность окисления пропилена в акролеин максимальна для катализаторов, содержащих 33—43% атомн. В1, но значительно ниже значений, полученных для молнбден-висму-товых контактов. [c.227]

    Систематика редких металлов может быть основана на химических свойствах элементов, на характере технологических процессов извлечения редких металлов из руд, на минералогических признаках. Так как, однако, и химические свойства, и технология, и характер минералов тесно связаны с положением элемента в периодической системе, то наиболее рациональной представляется систематика по группам периодической системы. При этом мы начинаем рассмотрение редких металлов не с первой, а с седьмой и шестой групп периодической системы, отражая таким образом до известной степени роль отдельных редких металлов в современной технике несомненно, что вольфрам, молибден, ванадий относятся к числу металлов, технически наиболее важных, посколы у без них не мыслится пр01изводство специальных сталей. [c.18]

    Понижение механических свойств при высоких температурах )бъясняется структурными и фазовыми превращениями, происходящими в металле, в связи с чем для работы аппаратов при высоких температурах требуются специально жаропрочные сорта стали с достаточно высокой механической прочностью при повышенных температурах, в частности с высоким сопротивлением ползучести. Наряду с жаропрочностью металлы, работающие при высоких температурах, должны обладать жаростойкостью —способностью сопротивления химическому разрушению поверхности под действием горячих газов или воздуха. Обычно в состав жаростойких сталей вводят легирующие элементы — кремний, алюминий, хром и др.,в состав жаропрочных сталей — молибден, вольфрам, ванадий, хром, никель, кобальт и др. [c.10]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]

    Группы элементов могут быть охарактеризованы следующим образом. Группы 1А и ПА включают щелочные и щелочноземельные элементы (секция х-элементов). Они имеют электронные конфигурации соответственно и Группы Б содержат переходные, или -элементы, атомы которых в основных состояниях имеют частично заполненные -орбитали. Например, в 4 периоде -элементы начинаются со скандия 5с(45 3й ) и кончаются цинком гп(45 3 ). Под каждым из этих десяти элементов находятся остальные -элементы, например У1Б группа— хром Сг, молибден Мо, вольфрам элемент 106. Секцию /-элементов обычно выделяют из П1Б группы вследствие их особых электронных и химических свойств у атомов этих элементов заполняются 4/- и 5/-подуровни соответственно. Секция р-элементов состоит из шести групп (П1А—УП1А), соответствующих заполнению электронами р-орбиталей. [c.39]

    Нержавеющая сталь относится к группе высоколегированных сталей, в которую обычно включают стали, содержащие,, помимо углерода, более 1 % (по массе) специально добавленных элементов. Путем добавок получают материалы, обладающие особыми свойствами, такими как окалиностойкость при высоких температурах, способность к резанию и др. Нержавеющие стали отличаются особой стойкостью против атмосферных воздействий и действия многих химических реактивов. Их основными состаиньгми частями, определяющими хорошие антикоррозионные качества, являются хром и никель или кобальт. Кроме них, в зависимости от желаемых механических свойств, указанные стали могут содержать другие легирующие элементы, такие как марганец, молибден, вольфрам, титан, ванадий, алюминий н др. По структуре нержавеющие стали можно разделить на 5 основные группы  [c.350]


Смотреть страницы где упоминается термин Химические свойства молибдена и вольфрама: [c.229]    [c.23]    [c.393]    [c.134]    [c.453]   
Смотреть главы в:

Анорганикум. Т.1 -> Химические свойства молибдена и вольфрама




ПОИСК





Смотрите так же термины и статьи:

Вольфрам, свойства

Молибден, свойства



© 2025 chem21.info Реклама на сайте