Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий, свойства

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]


    Благодаря тому, что атомы и ионы аналогичных элементов побочных подгрупп пятого и шестого периодов имеют не только сходное электронное строение, но и практически совпадающие размеры,— а их химических свойствах наблюдается гораздо более близкое сходство, чем в случае элементов четвертого и пятого периодов. Так, цирконий по своим свойствам значительно ближе к гафнию, чем к титану, ниобий сходен с танталом в большей степени, чем с ванадием и т. д. [c.642]

    В подгруппу титана входят элементы побочной подгруппы IV группы — титан, цирконий, гафний и искусственно полученный (см. стр. 112) курчатовий. Металлические свойства выражены у этих элементов сильнее, чем у металлов главной подгруппы четвертой группы — олова и свинца. Атомы элементов подгруппы титана имеют в наружном слое по два электрона, а во втором снаружи слое — по 10 электронов, из которых два — на -подуровне. Поэтому наиболее характерная степень окисленности металлов подгруппы титана равна +4. [c.648]

    Химические свойства 4/-элементов (лантаноидов) в основном схожи со свойствами лантана, поэтому разделение лантаноидов (называемых также редкоземельными элементами) сильно затруднено. Поскольку 4/-электроны слабо экранируют заряд атомного ядра, размеры ионов лантаноидов +3 уменьшаются от Ьа к Ьи они мало отличаются от размеров иона У +, принадлежащего предыдущему периоду. Этот эффект получил название лантаноидного сжатия. Он проявляется и у соответствующих пар элементов других побочных подгрупп — циркония 7г и гафния Н в IV группе, ниобия КЬ и тантала Та в V, молибдена Мо и вольфрама в VI группе. [c.153]

    Цирконий похож по свойствам на титан, но он менее распространен и тяжелее титана. [c.141]

    Как видно из приведенных данных, в ряду Ti—Zr—Hf несколько увеличиваются первые энергии ионизации. При переходе от Ti к Zr возрастают атомные и ионные радиусы, а цирконий и гафний из-за лантаноидного сжатия имеют почти одинаковые размеры атомов и ионов. Поэтому свойства Zr и Hf очень близки и их разделение — одна из сложнейших проблем неорганической технологии. [c.528]

    Одно нз наиболее ценных свойств металлического циркония — его высокая стойкость против коррозии в различных средах. Так, он не растворяется в соляной и в азотной кислотах и в щелочах. [c.650]

    Соедняения циркония и гафния напоминают соединения титана. Из оксидов устойчивыми являются только диоксиды, являющиеся ио химическому характеру амфотерными с преобладанием основных свойств. И.з галидов циркония и гафния наиболее устойчивы тетрагалиды, которые представляют собой летучие, легкоплавкие (за исключением фторидов) кристаллы, в расплавленном состоянии ие проводят электрический ток под действием воды гидролизуются, С водородом и элементами VA-, IVA- и ША-подгрупп периодической системы цирконий и гафний образуют соединения интерметаллидного характера — гидриды, нитриды, фосфиды, карбиды, силиды, бориды и т. д. — и ограниченные твердые растворы, В системах, образованных цирконием и гафнием с другими металлами, во многих случаях возникают интерметаллические соединения. [c.275]


    Пока ученые искали способ получения металлического циркония, практики уже начали применять некоторые из его соединений, в первую очередь двуокись циркония. Свойства двуокиси циркония в значительной мере зависят от того, каким способом она получена. образующаяся при прокаливании некоторых термически нестойких солей циркония, нерастворима в воде. Слабо прокаленная двуокись хорошо растворяется в кислотах, но, сильно прокаленная, она становится нерастворимой в минеральных кислотах, исключая плавиковую. [c.196]

    В этой группе сплавов наибольшее распространение получили сплавы алюминия с марганцем в количестве 1—1,6% Мп (сплавы марки АМц) и сплавы алюминия с магнием в количестве 0,5—7% Mg (сплавы марки АМг— так называемые магналии). Примеси железа и кремния ухудушают свойства сплавов, поэтому содержание их допускается не более 0,5—0,7%. Магналии склонны к образованию крупного зерна, что устраняют модифицированием сплава титаном, ванадием, цирконием. Химический состав и механические свойства алюминие-вомарганцевистых и алюминиевомагниевых сплавов приведен в табл. 11.2. [c.48]

    Для исследования были выбраны соли хрома, марганца, меди, цинка (первый переходный период), циркония и молибдена (второй переходный период). Приготовленные бензольные растворы пиридина А хинолина с известной концентрацией ( 0,2% азота) или дизельное топливо (0,024 % основного азота 0,04% общего азота) пропускались через слой исследуемой соли, помещенной в колонку диаметром 10 мм при комнатной температуре. Время обработки составляло 4 ч. Соотношение количества соли и раствора составляло 1 (по весу) с той целью, чтобы различие в свойствах солей были более отчетливы. Концентрация растворов определялась потенциометрически, как описано в [19], после промывки растворов горячей дистиллированной водой и осушки поташом в течение суток. Достоверность результатов была проверена сравнением данных, полученных по методу Кьельдаля и потенциометрического титрования. Было установлено, что присутствие следов металлов в титруемом растворе не влияет на положение точки эквивалентности. Таким образом была определена степень удаления азота из бензольных растворов пиридина и хинолина солями железа — хлорным, хлористым, азотнокислым окисным, ферри-цианидсм калия и хлористым цинком. Результаты приведены в табл. 1. [c.110]

    Вышли первые пять томов восьмитомного справочника по термодинамическим свойствам соединений цветных металлов Я. И. Герасимова, А. Н. Крестовникова и А. С. Шахова . В отличие от названных выше изданий в нем приводятся не избранные, а все данные, имеющиеся в литературе, о термодинамических свойствах этих веществ и различных реакций, в которых они принимают участие. Вышедшие тома охватывают соединения цинка, меди, свинца, олова, серебра, вольфрама, молибдена, титана, циркония, ниобия, тантала, алюминия, сурьмы, магния, никеля, висмута, кад.мия, ванадия, ртути и бериллия. [c.78]

    МГз. В работе был произведен расчет термодинамических свойств галогенидов, гидридов и гидроксидов щелочно-земельных металлов, титана и циркония от 500 до 4500 К. [c.468]

    На основании многочисленных опытов по изучению растворимости в водных средах, изучению экстракционных свойств НСО по отношению к водным растворам солей редких металлов урана, тория, циркония, гафния, молибдена, тантала, ниобия, р. 3. элементов, палладия и других было ясно, что НСО как эффективные экстрагенты следует получать из нефтяных сульфидов, выкипающих в интервале 250—370°. [c.29]

    Развитие новых областей науки и техники связано с созданием высокотемпературных материалов, обладающих низкой упругостью паров и скоростью испарения, высокой термостойкостью, механической прочностью, а также химической устойчивостью против действия различных агрессивных сред. Перспективны в этом отношении тугоплавкие нитриды как неметаллические — типа нитридов алюминия и бора, так и металлоподобные — типа нитридов титана и циркония. Свойства тугоплавких соединений определяются характером химической связи между составляющими их компонентами. [c.112]

    Значение того или иного металла в народном хозяйстве страны принято оценивать долей его производства в общем производстве металлов или в производстве железа и его сплавов. Удельный вес различных металлов существенно меняется со временем. Появление новых отраслей техники (ракетостроение, атомная энергетика, электроника и др.) вызывает потребность в материалах с новыми свойствами и стимулирует развитие новых направлений в металлургии. Так уже после 1945 года промышленное значение приобрели такие металлы как титан, молибден, цирконий, ниобий. В настоящее время в цветной металлургии производятся более 30 металлов, являющихся редкими элементами, и сотни их сплавов. Поэтому доля производства различных металлов со временем меняется. Например, за последние годы существенно возросла доля производства алюминия, но практически не изменилась доля производства меди. [c.4]

    Гафний не имеет собственных минералов и в природе обычно сопутствует цирконию. По химическим свойствам он весьма сходен с цирконием, но отличается от него способностью интенсивно захватывать нейтроны, благодаря чему этот элемент используется в регулирующих и защитных устройствах атомных реакторов. При этом применяют как металлический гафний, так и некоторые его соединения, например, диоксид гафния НЮг последний применяется также при изготовлении оптических стекол с высоким показателем преломления. [c.651]


    Позже металлурги обнаружили, что пластические свойства циркония зависят главным образом от содержания в нем кислорода. Если в расплавленный цирконий проникнет свыше 0,7% кислорода, то металл будет хрупким из-за образования твердых растворов кислорода в цирконии, свойства которых сильно отличаются от свойств чистого металла. [c.195]

    Цирконий в ряду напряжений относится к активным металлам. Обычно он находится в очень устойчивом пассивном состоянии. Температура плавления циркония 1852 °С, плотность 6,45 г/см . При повышенных температурах металл легко взаимодействует с Oj, Na и Hj. Необычным свойством циркония является высокая [c.378]

    Разделение циркония и гафния труднее, чем любых соседних элементов, включая лантаноиды, так как их химические свойства ближе друг к другу, чем у всех остальных пар родственных элементов (рис. 3.99). Для отделения циркония от гафния применяют дробную кристаллизацию КгХгРе и К2Н Ре, ректификацию летучих соединений (ЭСЬ. и др.), ионный обмен, селективную экстракцию, последний метод наиболее широко применяют в промышленности. [c.503]

    Свойства некоторых солей циркония. Свойства четырехфтористого и четыреххлористого циркония приведены ниже [126]. [c.263]

    Цирконий почти не захватывает медленные (тепловые) нейтроны. Это его свойство в сочетании с высокой стойкостью против коррозии и механической прочностью прн повышенных температурах делает цирконий и сплавы на его основе одним из главных конструкционных материалов для энергетических атомных реакторов. К важнейшим сплавам циркония относятся ц и р к а л  [c.650]

    Развитие термодинамики неорганических соединений шло в первую очередь в направлении исследования процессов цветной металлургии, хлорирующего обжига, металлотермии, металлургии титана, циркония и ряда более редких элементов. Вместе с тем методы термодинамики начинают использоваться и при изучении различных проблем геологии. Повышение интереса к химии высоких температур привело к усиленному изучению термодинамических свойств веществ при высоких и очень высоких температурах. [c.20]

    Чем объясняется большое сходство химических свойств циркония и гафния и их соединений  [c.199]

    Введение титана и циркония в сплавы придает им ценные физикохимические свойства. Так, добавка к стали уже 0,1% Ti придает [c.532]

    Твердые теплоносители должны обладать следующими свойствами жаростойкостью, стойкостью к резким колебаниям температуры, химической стойкостью, высокой механической прочностью (особенно высокой стойкостью к истиранию). Этим требованиям удовлетворяют зерна размером 6—12 мм из силиката циркония, оксида алюминия и каолина [20]. [c.222]

    Хорошая жаростойкость никеля еще повышается при добавлении 20 % Сг. Этот сплав устойчив к окислению на воздухе до 1150 °С (один из наиболее термостойких сплавов, совмещающий отличную стойкость к окислению с хорошими физическими свойствами как при низких, так и при повышенных температурах торговое название в США нихром У). Устойчивость промышленных марок этого сплава к окислению значительно повышается, когда во время плавки в них добавляют металлический кальций в качестве раскислителя, предотвращающего окисление сплава по границам зерен. Полезны также небольшие количества циркония, [c.207]

    В свободном состоянии цирконий представляет собой блестящий металл плотностью 6,45 г/см , плавящийся при 1855 °С. Не содержащий примесей цирконий очень пластичен и легко поддается холодной и горячей обработке. Как и у титана, механические свойства циркония резко ухудшаются при содержании в нем примесей неметаллов, особенно кислорода. [c.650]

    Предпринимаются попытки сочетать положительные свойства различных добавок. Например, высокоэффективные мембраны получены комбинированием добавок гидроокиси циркония и полиакриловой кислоты [103], а также осаждением слабых полиэлектролитов на подложках с последующим переводом их к нейтральной форме за счет изменения pH раствора [104]. [c.88]

    Технический цирконий, применяемый преимущественно в качестве коррозионностойкого материала в химической промышленности [45], содержит до 2,5 % гафния, который трудно поддается отделению из-за сходства химических свойств циркония и гафния. Эта примесь не оказывает заметного влияния на коррозионные свойства циркония. Чистый металл с малым содержанием гафния (< 0,02 %) обладает малым Охватом тепловых нейтронов, что делает его особенно пригодным мя использования в ядерной энергетике.  [c.379]

    В последние годы большую актуальность приобрела проблема получения ультрадисперсных порошков (УДП) нитридов переходных металлов IV и V групп периодической системы (титана, циркония и др,). УДП имеют размеры частиц менее 1 мкм и обладают рядом особых физических свойств [9]. [c.176]

    Характер действия катализаторов определяется их химической природой. Так, благодаря носителям, обладающим кислотной природой, — алюмосиликатам аморфной и кристаллической структуры, магний- и цирконий-силикатам, а также фосфатам, катализаторы помимо гидрирующих свойств обладают изомеризующей и расщепляющей способностью. Носители нейтральной природы — окись алюминия, окись кремния, окись магния и др., не придают, как правило, дополнительных свойств катализаторам гидрогенизационных процессов [36]. [c.66]

    Процесс образования дефектов кристаллической решетки, конечно, эндотермический, но, как и всякое разупорядочение, сопровождается возрастанием энтропии. Поэтому в согласии с AG = Д/У — TAS при любог температуре, отличной от абсолютного пуля, в реальном кристалл должны существовать дефектные позиции пли вакансии. В области гомогенности свойства соединений переменного состава (энтальпия и энергия Гиббса образования, энтропия, электрическая проводимость и пр.) изменяются непрерывно. Например, для нитрида циркония энтальпия и энергия Гиббса образования имеют следующие значения (кДж/моль)  [c.261]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    При нагреве до 80—100° С молибден растворяется в серной н соляной кислотах. Азотная кислота и царская водка действуют на молибден при комнатной температуре медленно, а при высокой температуре — быстро. Для повышения жаропрочности молибдена его легируют небольшими количествами титапа, циркония н ниобия. Лучшими свойствами при высокой температуре обладают сплав молибдена с 0,5% Т . Предел прочности литого деформированного молибдена с 0,5% Т . Предел прочиоспи литого деформированного молибдена составляет при комнатной температуре 470—700 Мн/м , а при 870° С 170—360 Мн1м . Для сплава молибдена с 0,45% Т1 предел прочности при тех же температурах соответстве[[ [о составляет 520—930 и 280—610 Мн/м -, пластичность сплава высокая. [c.293]

    Оба эти металла применяются в атомных реакторах. Цирконий отличается высоким сопротивлением коррозии и действию нейтронов и не подвергается изменениям во время облучения. Поэтому цирконий применяется для защиты топлива в атомных реакторах и накладывается в виде рубашки на пруты металлического урана, которые вводятся внутрь реактора. Совершенно противоположные свойства у гафния, который хороига абсорбирует нейтроны и поэтому является хорошим замедлителем. Так как оба металла, как правило, в природе встречаются вместе, то их приходится разделять. При этом возникают затруднения, связанные с большим сходством этих металлов по свойствам. Разделение их обычными химическими методами практически невозможно. Промышленное решение этого вопроса основывается на физических процессах, главным образом на экстракции органическими жидкостями из водных солянокислых или азотнокислых растворов [468, 471, 485]. [c.445]

    При высокой температуре бор соединяется со многими металлами, образуя бор иды, [шпример, борид магния Mg3B2, Многие борцды очень тверды и химически устойчивы, причем сохраняют эти свойства при высоких температурах. Для них характерна также тугоплавкость. Например, борид циркония ZrB2 плавится при 3040 °С. Благодаря таким свойствам бориды некоторых металлов применяются для изготовления деталей реактивных двигателей и лопаток газовых турбин. [c.631]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Склонность Э+ к гидролизу велику, но в пределах подгруппы 1УБ снижается (а связи с усилением основных свойств). Так, Т1+ в разбавленных растворах практически полностью гидролизуется (образуется Т102-л Н20), а 2г+ и Н + подвергаются лишь частичному гидролизу с образованием оксосолей, содержащих группы 2гО (цирконил), (гафнил), а также 2ггОз (дицирконил) и [c.507]


Смотреть страницы где упоминается термин Цирконий, свойства: [c.258]    [c.57]    [c.25]    [c.509]    [c.277]    [c.288]    [c.122]    [c.251]    [c.155]   
Химия (1986) -- [ c.326 , c.327 ]

Химия (1979) -- [ c.340 , c.341 ]

Техника физико-химических исследований при высоких и сверхвысоких давлениях (1976) -- [ c.413 ]




ПОИСК





Смотрите так же термины и статьи:

Адамова, А. Т. Григорьев. Коррозионные и механические свойства сплавов цирконий — бериллий — олово

Груздева, А. С. Адамова. Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий и цирконий — мель — олово

Груздева, А. С. Адамова. Влияние кремния, олова и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий

Груздева, А. С. Адамова. Коррозионные и механические свойства сплавов цирконий — медь — олово

Груздева, А. С. Адамова. Коррозионные свойства сплавов цирконий — молибден — ниобий

Груздева, И. А. Трегубое. Циркониевый угол диаграммы состояния и свойства сплавов системы цирконий — железо — молибден

Груздева, Т. Н. Загорская, И. И. Раевский. Влияние малых добавок меди, никеля и хрома на коррозионные и механические свойства сплавов системы цирконий — железо — ниобий

Груздева, Т. Н. Загорская, И. И. Раевский. Коррозионная стойкость и механические свойства сплавов цирконий — железо — ниобий

Груздева, Т. Н. Загорская, И. И. Раевский. Строение и свойства сплавов циркониевого угла системы цирконий — алюминий — железо

Иванов. Жаростойкость и механические свойства сплавов цирконий — медь — никель

КРАТКИЕ СООБЩЕНИЯ Парциальные термодинамические свойства кислорода в сплавах титана и циркония с малым содержанием переходных металлов и кислорода Балабаева, И. А. Васильева

Коррозионные свойства циркония

Кудрявцев, И. А. Трегубое. Циркониевый угол диаграммы состояния и свойства сплавов системы цирконий — железо — олово

Масла изоляционные диэлектрические свойства, стабилизация алюминий пропил цирконий

Механические свойства гидрида циркония при высоких температурах

ОлЫт 1. Получение гидроокиси четырехвалентного циркония и исследование ее свойств

Описана технология изготовления порошков и компактных изделий мононитридов переходных металлов — титана, циркония, ниобия, ванадия и тантала, а также приведены термоэмиссионные свойства и коэффициент излучения до температур порядка

Опыт 1. Получение гидрата двуокиси циркония и исследование его свойств

Опыт 1. Получение гидроокиси четырехвалентного циркония и исследование ее свойств

Получение и свойства гидроокиси циркония

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден

Пятницкий, И. А. Трегубое. Циркониевый угол диаграммы состояния и свойства сплавов системы цирконий — медь — молибден

Разработана технология получения изделий из нитридов алюминия, бора, титана и циркония. Приведены данные по исследованию свойств указанных нитридов Казаков. Огнеупорные материалы из нитридов кремния и бора

Свойства гидридов циркония

Свойства гидроксидов титана (IV) и циркония

Свойства деформированного циркония

Свойства титана, циркония и гафния

Сходство и различие свойств ионов магния, скандия и циркония при взаимодействии с фосфат-ионом

Технологические свойства и способы соединения циркония и его спла- I Применение циркония

Трегубое, А. Т. Григорьев. Механические свойства сплавов цирконий — ванадий — ниобий

Физико-механические свойства циркония

Физические и химические свойства циркония

Цирконий гидрат двуокиси, получение и свойства

Цирконий и его сплавы механические свойства

Цирконий и его сплавы физические свойства

Цирконий каталитические свойства

Цирконий магнитные свойства

Цирконий тетрабромид безводный, свойства

Цирконий физические свойства

Цирконий химические свойства

Цирконий, ацетилацетоната получение и свойства

Цирконий, двуокись каталитические свойства

Цирконий, механические свойства

Электрохимические свойства циркония



© 2025 chem21.info Реклама на сайте