Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение хлористого водорода

    Существование критической температуры было установлено первоначально (1860) Д. И. Менделеевым в результате изучения некоторых свойств жидкостей — изменения поверхностного натяжения жидкостей с изменением температуры ( 138). Он назвал ее температурой абсолютного кипения жидкостей и показал, что выше этой температуры вещество не может находиться в жидком состоянии. Т. Эндрьюс (1869) пришел к аналогичному выводу при изучении свойств (сжимаемости) газов и паров (углекислоты и менее детально аммиака, хлористого водорода, сероуглерода и др.). [c.109]


    Природа акцептора побочного продукта и его количество. Если эмульсионная поликонденсация протекает с выделением такого побочного продукта, как хлористый водород, то в систему необходимо добавлять щелочной реагент для нейтрализации. При этом, изменяются такие характеристики эмульсионной системы, как соотношение фаз, поверхностное натяжение и др.. Влияние акцептора может быть достаточно сложным, [c.159]

    Небольшая вязкость полимеров, образующихся при межфазной поликонденсации в системе, состоящей из двух органических жидкостей, может быть объяснена низким поверхностным натяжением на границе раздела жидкостей. Следует отметить также низкие выходы продукта несмотря на отсутствие гидролиза. Это, очевидно, связано с небольшой скоростью основной реакции за счет малой полярности среды, а также недостаточно полным отводом хлористого водорода из зоны реакции. [c.192]

    Хлористое железо (РеСЬ). Оно может быть получено нагреванием хлорного железа (Р 1з) в токе водорода. Представляет собой белые кристаллы с температурой плавления 674° и температурой кипения 1023° С. Плотность твердого кристаллического РеСЬ — 2,98. В связи с тем, что РеСЬ очень легко окисляется, работать с этой солью очень трудно. По-видимому, этим можно объяснить недостаточную изученность физико-химических свойств чистого расплавленного хлористого железа. Никаких данных о плотности, вязкости, поверхностном натяжении и удельной электропроводности расплавленного РеСЬ пока нет. [c.41]

    Для приготовления водной эмульсии хлористого винила берут следующие вспомогательные вещества эмульгаторы (различные мыла, некаль), регуляторы pH среды (например, фосфорная кислота, пирофосфат натрия) и инициатор полимеризации (перекись бензоила или перекись водорода). Иногда добавляют стабилизаторы (желатин, поливиниловый спирт) и вещества, уменьшающие поверхностное натяжение среды (например, амиловый спирт). Для получения эмульсии сначала в воду вводят все вспомогательные вещества, а затем при охлаждении водной эмульсионной смеси в нее вводят сжиженный хлористый винил. При температуре 40—50° С, которая достигается пуском горячей воды в рубашку, начинается реак- [c.102]

    Газообразные продукты горения порохов состоят в основном из хлористого водорода и углекислого газа. Проникая в поры пород, хлористый водород при наличии воды образует слабо концентрированную соляную кислоту, которая растворяет стенки трещин, кана чов, увел/пивая их раснрытость. Углекислый газ, растворяясь в нефти, С11нжает ее вязкость, поверхностное натяжение на границе с водой н породой, увеличивая тем самым тфодуктивность сква живы. [c.106]


    Одним из наиболее важных соединений фтора является фтористый водород, Подобно тому, как вода является одним из наиболее важных соединений кислорода. Жвдкий фтористый водород во многих отношениях более напоминает воду, чем хлористый водород. Фтористый водород представляет собой прекрасный ионизирующий растворитель, обладает сравнительно высоким удельным весом [20], высокой диэлектрической постоянной, имеет довольно высокую температуру кипения по сравнению со своим молекулярным весом и т. д. Считалось, что эти свойства воды, фтористого водорода и других жидкостей обусловлены ассоциацией молекул благодаря водородной связи. Фтористый водород, однако, сильно отличается от воды по некоторым свойствам, например по поверхностному натяжению [20] и вязкости [21]. Удовлетворительное объяснение этих фактов до настоящего времени отсутствует. В результате изучения жидкой воды и ее растворов было сделано много ценных научных выводов. Исследование жидкого аммиака, родственного соединения, способствовало детальному изучению растворителей такого типа. Изучение фтористого водорода в еще большей степени будет способствовать изучению растворителей, так как ЫНз, НгО и НР являются водородными соединениями трех соседних электроотрицательных соединений первого ряда периодической системы и представляют [c.24]

    Пиридазин является слабым однокислотным основанием с довольно высокой температурой кипения. Сам пиридазин представляет собой бесцветную жидкость со слабым запахом, напоминающим запах пиридина, т. пл.—6,4° т. кип. 207,4° в атмосфере азота при давлении 762,5 мм по 1,5231 1,1054 [16]. На основании криоскопических определений пиридазин, по-видимому, только немного ассоциирован в бензоле или диоксане его высокая температура кипения объясняется большим дипольным моментом (около 4D) [17, 100], как это наблюдается и в случае нитробензола. Рассчитанное значение диполь- ного момента [101, 102] согласуется с экспериментальными данными. Величина поверхностного натяжения пиридазина (46,9 дн1см при 34°) также близка к соответствующей величине для нитробензола, однако пиридазин имеет низкую константу Этваша, которая заметно меняется с температурой. Была измерена также вязкость пиридазина [17]. Абсорбционный спектр этого соединения имеет две сильных полосы, Х акс. 245—250 и 338 мц, в гексане в воде вторая из этих полос смещается до 300 мц водный раствор хлористого водорода обнаруживает очень сходную кривую [64, 103]. Квантовомеханические расчеты предсказывают появление полосы при 336 мц [104]. Исследован также спектр паров пиридазина [105]. Пиридазин смешивается во всех отношениях с водой, бензолом, диоксаном и спиртом несколько менее растворим в эфире и почти совсем нерастворим в циклогексане [17]. Он представляет собой очень слабое основание, у которого рКа равно только 2,33 (у пиридина p7< 5,23) [106]. Однако пиридазин является более сильным основанием, чем пиримидин (1,30) или пиразин (0,6). [c.93]

    Поверхностное натяжение расплавленных солевых смесей измеряли методом максимального давления пузырька газа на описанной ранее [1] установке. В качестве рабочего газа использовали тщательно очищенный от примесей кислорода и влаги аргон. Трубочки из высокообожженной окиси бериллия диаметром до 3 мм предварительно затачивали на нож и закрепляли в трубке из нержавеющей стали. Глубину погружения трубочки в расплав определяли при помощи микровинта с точностью до 0,01 мм. Скорость подачи газа составляла 0,05 m Imuh. При этой скорости обеспечивался нагрев газа до температуры расплава [2]. Момент касания трубочки определяли при помощи электроконтакта или по началу подъема жидкости в манометре. Используемые в опытах хлористый натрий и хлористый калий предварительно перекристаллизовыва-ли, сплавляли и выдерживали при 850—870° С под пониженным давлением (2—3 мм рт. ст.) в течение 30—40 мин для удаления из них растворенных газов и влаги. Тетрахлорид урана готовили хлорированием двуокиси урана четыреххлористым углеродом [3]. Полученную соль подвергали двойной дистилляции. Химический анализ показал, что [С1] [U]=4,01 (т. е. 4 1). Трихлорид урана готовили восстановлением U U в токе водорода по методике, описанной в работе [4]. Все операции по приготовлению нужных солевых смесей готовили в сухой камере, переносили в тигель из окиси бериллия и помещали в ячейку из кварца. Температуру расплава измеряли платина-платинородиевой термопарой с помощью потенциометра Р-307. [c.58]

    Хорошо известно, что целлюлоза, несмотря на наличие трех гидроксильных групп в каждом звене макромолекулы, нерастворима в воде. Вследствие плотной упаковки макромолекул, а также из-за большого количества межмолекулярных связей гидроксильные группы становятся недоступными для молекул воды. Введенные в целлюлозу эфирные группы, раздвигая макромолекулы, открывают воде доступ к гидроксильным группам, что обусловливает водораствори-мость метилцеллюлозы. Одновременно метилцеллюлоза приобретает определенный гидрофильно-гидрофобный баланс и поэтому способна понижать поверхностное натяжение на границе раздела фаз масло — вода. Введение слишком большого количества эфирных групп увеличивает гидрофобность метилцеллюлозы, и она теряет способность растворяться в воде. Хорошей растворимостью в воде обладает метилцеллюлоза, у которой этерифицировано 22—32% гидроксильных групп . Метилцеллюлозу обычно получают путем воздействия на целлюлозу хлористым метилом выделяющийся хлористый водород нейтрализуют натриевой щелочью. Часто при изготовлении метилцеллюлозы для улучшения ее растворимости в воде применяют также небольшое количество окиси этилена или оки- [c.69]


    Высокомолекулярные полиамиды получают также эмульсионной поликонденсацией процесс протекает с высокой скоростью [296, 308]. При этом в отличие от поликонденсации на границе раздела фаз полимер образуется в органической фазе, так как диамин почти полностью находится в ней, тогда как нейтрализация выделяющегося хлористого водорода протекает в водной фазе. Выход и молекулярная масса полимера определяются коэффициентом распределения диамина, составом органической фазы, поверхностным натяжением, степенью дисперсности и степенью набухания образующегося полиамида в органической фазе. Поликоиденсация ж-фенилендиамина с изофталоилхлоридом в системе тетрагидрофуран— вода — ЫагСОз протекает количественно в течение 1 мин. [c.395]

    Вода играет положительную роль при синтезе полиамидов по эмульсионному и межфазному способам. Она способствует диффузии диаминов из водной в органическую фазу (зону реакции), отводу хлористого водорода из этой зоны, повышает поверхностное натяжение на границе раздела фаз и т. д. Показано [48], что в водноорганических системах, содержащих хорошо смешивающиеся с водой органические жидкости, резкое уменьшение содержания воды в органической фазе эмульсионной системы приводит к снижению молекулярной массы полиамида. Этот факт приходится связывать с каталитическим действием воды. Предполагаемый механизм катализа [49] сводится к образованию комплекса, в котором облегчено протекание заключительной стадии ацилирования (распад а-комплекса и отщепление галогенводо-рода)  [c.50]


Смотреть страницы где упоминается термин Поверхностное натяжение хлористого водорода: [c.111]    [c.277]    [c.184]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.464 ]

Производство хлора и каустической соды (1966) -- [ c.178 ]

Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Хлористый водород



© 2025 chem21.info Реклама на сайте