Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы моделей гидродинамики потоков

    На этапе макрокинетических исследований решают следующие задачи 1) выбор типа опытного реактора, осуществляемый в соответствии с данными об организации процесса 2) определение модели гидродинамики процесса на основе данных о структуре потоков 3) анализ диффузионных эффектов, процессов массо- и теплопереноса в аппарате и оценка соответствующих тепловых и диффузионных параметров 4) синтез статической математической модели и процесса, установление ее адекватности 5) статическая оптимизация 6) синтез динамической модели процесса и установление ее адекватности анализ параметрической чувствительности 7) анализ устойчивости теплового режима процесса 8) динамическая оптимизация. [c.29]


    В разделе 7.1 из цепочки Боголюбова строго выводится уравнение Больцмана — наиболее известное из интегральных кинетических уравнений. Раздел 7.2 посвящен выводу классических уравнений гидродинамики из уравнения Больцмана, при этом для коэффициентов переноса (вязкости и теплопроводности) получены явные выражения. В разделе 7.3 излагается статистическая модель псевдоожиженного слоя, основанная на использовании интегрального кинетического уравнения типа Больцмана и Фоккера — Планка для функции распределения твердых частиц по координатам и скоростям. Построена также замкнутая система уравнений, описывающая изменение во времени гидродинамических параметров обеих фаз слоя. Приведены простейшие примеры применения этой системы уравнений при изучении структуры потоков в псевдоожиженном слое. [c.313]

    Значительную переработку претерпела четвертая часть, где рассмотрены аппараты для проведения процессов массопередачи. При анализе работы аппаратов широко использован метод математического моделирования. Систематизированы математические модели различных типов аппаратов. Расширены вопросы, связанные с оформлением новых методов проведения процессов массопередачи насадочные эмульгационные колонны и аппараты с внешним подводом энергии. Заново представлены обш,ие закономерности гидродинамики барботажного слоя, влияние структуры потоков на эффективность тарельчатых колонн. Дана оценка эффективности массопередачи на тарелках прн разделении многокомпонентных смесей, систематизированы математические модели тарельчатых ректификационных колонн. [c.4]

    Типы моделей гидродинамики потоков [c.8]

    Следует заметить, что этапу проектирования (выбора) технологической схемы предшествует этап конструирования высокоэффективного массообменного аппарата, который, в свою очередь, включает этап конструирования отдельного контактного устройства. Составными элементами этого этапа являются определение параметров математической модели гидродинамики всех типов контактных устройств, а также кинетики процесса массопередачи в зависимости от характера движения жидкости на тарелках колонны (прямоток, противоток и т. д.) и степени перемешивания парового (газового) потока - от идеального вытеснения до полного перемешивания. [c.13]

    С феноменологической точки зрения течение жидкости через неподвижный слой адсорбента представляет собой смешанную задачу гидродинамики поток, заполняющий свободное пространство между частицами слоя, обтекает зерна и движется внутри каналов неправильной формы и переменного поперечного сечения Однако прн оценке перепадов давления в зернистом слое принимают в соответствии с выбранной моделью в качестве определяющего размера либо диаметр зерна загрузки й, либо эквивалентный диаметр норового канала э- Поэтому в инженерной практике для определения гидравлического сопротивления плотного слоя используют уравнения типа [c.155]


    Выделение ароматических углеводородов из катализатов платформинга бензиновых фракций, избирательная очистка нефтяных масел, очистка керосино-газойлевых фракций, органических продуктов и сточных вод методом экстракции получили широкое распространение в производственной практике. Для анализа работы существующих экстракционных процессов и проектирования новых важным моментом является разработка и внедрение методов математического моделирования, что позволит проводить выбор лучших вариантов технологических решений на ЭЦВМ, подбирать оптимальные режимы работы экстрактора и в целом повышать технико-экономические показатели процесса. Наиболее общим подходом в математическом моделировании экстракции является. использование гидродинамической массообмённой модели. Однггко в связи.с тем, что гидродинамика потоков во многих типах экстракционных аппаратов сложна, а коэффициенты массообмена трудно определяемы, решение многих технологических задач целесообразно выполнять с применением статической модели процесса, основанной на теоретической ступени контакта двух жидких фаз. Такой подход облегчается тем, что статическая модель практически адекватна реальному объекту при равенстве их эффективности, выраженной числом теоретических ступеней контакта. [c.3]

    Рассмотрение существующих типов математических описаний процесса экстракции показывает, что однопараметрические модели недостаточно точно отображают его характеристики в реальных условиях. Для адекватного моделирования промышленных экстракторов требуются многопараметрические модели структуры потоков, разработка которых продолжается в настоящее время. Для интенсифицированных экстракторов с хорошо упорядоченной гидродинамикой, работающих в режимах развитой турбулентности, приемлемую для практических расчетов адекватность описания обеспечивает двухпараметрическая ячеечная модель с обратными потоками. [c.377]

    Соответствие структуры потока жидкости на тарелках данного типа модели полного перемешивания подтверждено специальными исследованиями гидродинамики. [c.86]

    Основой для составления математического описания реакторного процесса являются уравнения, описывающие гидродинамику потоков перерабатываемых и получаемых продуктов. В зависимости от этого и классифицируются реакторы по типам. По двум основным моделям потоков различают два типа реакторов реактор идеального перемешивания и реактор идеального вытеснения. При выборе модели потока учитываются следующие факторы [5] модель должна отражать физическую сущность реального потока при относительной простоте математической формулировки должен существовать метод либо экспериментального определения параметров модели, либо аналитического их расчета структура потоков должна быть удобна для расчета конкретного процесса. [c.21]

    При разработке натурных теплообменников иногда целесообразно провести исследование гидродинамики входного участка теплообменника или другого участка сложной конфигурации, чтобы определить общее распределение потока или падение напора. Опыты такого рода можно проводить на простых моделях, поскольку не требуется осуществлять подвод или отвод тепла. Необходимо лишь геометрическое подобие модели и натурного аппарата и обеспечение соответствующего диапазона чисел Рейнольдса. Следовательно, эти опыты можно выполнять с водой или воздухом вместо тех теплоносителей, работа с которыми вызвала бы затруднения. Особенно для подобных целей подходит воздух, небольшие утечки которого не приведут к осложнениям. Кроме того, стоимость модели будет невелика. Если нет резкого отрыва потока, то для определения направления течения, а также распределения скоростей можно использовать трубки Пито. При наличии отрыва необходимо произвести визуализацию течения, используя для этого пучок нитей, которые с помощью изоляционной ленты крепятся к стенкам канала или закрепляются на проволочном зонде, обладающем возможностью перемещаться в поле течения. Можно использовать дым, но это довольно сложно, а результаты обычно бывают неудовлетворительны. Струи дыма за счет турбулентности настолько быстро рассеиваются, что подобный метод применим только при относительно низких числах Рейнольдса и простых геометрических конфигурациях. Любой из этих способов пригоден в том случае, если модели выполнены из прозрачного пластика типа люцита. [c.321]

    Изучение гидродинамики на макроуровне дает возможность учесть влияние структуры потоков на эффективность диффузионного переноса. В этой области достигнуты наиболее значительные успехи, что позволило создать различные экспериментальные методики для определения свойств и структуры взаимодействующих потоков, а также разработать математические модели типовых структур потоков, на основе которых сейчас можно описать контактные устройства практически любых типов для диффузионных процессов. [c.267]


    При изучении гидродинамики движения фаз в колонных шнековых экстракторах типа Гильдебрандта установлено [102], что процесс экстрагирования в таких аппаратах сопровождается существенным продольным перемешиванием, которое отражено в модели через величину обратного потока. Затянутость - хвостовой части функции распределения по времени пребывания в слое позволило обосновать наличие застойных зон и разработать ряд вариантов моделей ячеечной структуры с застойными зонами. [c.122]

    По типу математического описания математические модели реакторов могут быть классифицированы по двум группам ква-зигомогенные и гетерогенные модели, что зависит от того, учтено или не учтено в моделях влияние процессов массо- и теплопередачи между фазами. Внутри каждой группы уравнения материальных и тепловых балансов записываются в соответствии с принятой моделью гидродинамики потоков. [c.234]

    Разработать полную модель изотермического реактора, в котором протекает реакция типа А —> В в общем виде с получением итоговых формул, позволяющих рассчитать концентрацию компонентов А и В на выходе из реактора с учетом его гидродинамики. Рассчитать необходимые параметры модели реактора (расходы локальных потоков по отдельным ветвям гидродинамической модели, время пребывания локальных струй в отдельных элементах схемы и т.д.). Определипъ, каких параметров не хватает для численного решения полной модели. [c.31]

    Таким образом, ячеечная модель с обратными потоками может быть рекомендована как универсальная (типовая) мо дель для математического описания экстракторов различных типов. Особенно целесообразно ее применение для интенсифи-циро ванных подводом внешней энергии экстракторов, которые обладают упорядоченной гидродинамикой, обеспечивающей высокую степень адекватности моделей с детерминированной структурой. [c.101]


Смотреть страницы где упоминается термин Типы моделей гидродинамики потоков: [c.228]   
Смотреть главы в:

Математическое моделирование основных химико-технологических процессов. Ч.1 -> Типы моделей гидродинамики потоков




ПОИСК





Смотрите так же термины и статьи:

Гидродинамика

Модели типа



© 2025 chem21.info Реклама на сайте