Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задачи, решаемые при исследовании ХТС

    Вопрос о влиянии скорости пара на теплообмен при конденсации на вертикальной охлаждаемой стенке впервые теоретически был исследован Нуссельтом. Задачу решали для случая ламинарного течения пленки конденсата в предположении постоянства скорости парового потока вдоль поверхности конденсации, что позволило пренебречь падением давления на поверхности и внутри слоя пленки, а также изменением касательного напряжения трения на границе раздела фаз в направлении парового потока. При выводе расчетных зависимостей Нуссельт исходил также из постоянства коэффициента трения между паром и пленкой конденсата (С/п = 0,00515) и не учитывал влияние поперечного потока массы-конденсирующегося пара на изменение касательного напряжения. В результате была получена следующая зависимость для отношения коэффициентов теплоотдачи при движущемся и неподвижном паре  [c.133]


    Главная задача экономического анализа состоит ныне в выявлении наиболее эффективного пути развития социалистической экономики, всех возможностей экономического роста. Эта задача решается исследованием использования как тактических, так и стратегических резервов производства. В связи с преимуществами развитого социализма по сравнению с капиталистической системой хозяйствования экономический анализ все более углубляется за счет поиска перспективных резервов коммунистического строительства, порождаемых прежде всего научно-техническим прогрессом. [c.4]

    Поставленные задачи решаются на основе современных методов исследования ферментов. Практическая направленность занятий связана с освоением различных методов регистрации скоростей ферментативных реакций, включающих использование сопряженных ферментных систем и метода радиоактивного анализа. С целью определения активности мембранных ферментов осваиваются техника получения различных субклеточных структур и приемы работы с различными типами детергентов. Проблемы структурного анализа ферментов решаются с привлечением методов избирательной химической модификации белков, флуоресцентных методов, а также методов ковалентной и адсорбционной иммобилизации на различных носителях, включая искусственные фосфолипидные мембраны (липосомы). Кроме того, осуществляется практическое знакомство с различными аспектами кинетического исследования ферментов осваиваются различные способы оценки кинетических параметров, ингибиторный анализ, проводится исслс- [c.329]

    Если в системе образуется только одни комплекс, то для определения того или иного параметра применимы имеющиеся графические и аналитические методы обработки результатов эксперимента [1, 2], которые, как правило, являются приближенными. В случае многокомпонентных систем, в которых образуется более одного комплекса, эти методы непригодны. Исследование таких систем становится возможным лишь при использовании вычислительной техники [3—10]. Чаще всего в этих работах задача решается на основе отдельных программ, составленных для частных видов схем реакций и для одного физического метода в отдельности [3—8]. [c.120]

    При кинетических исследованиях химических реакций обычно возникает три типа задач. К задачам первого типа относится феноменологическое изучение зависимости скорости от концентраций реагентов и определение последних во времени. Такие задачи решаются методами, разработанными в формальной кинетике. Если скорость реакции (1.1) равна [c.16]


    Методы седиментации и ультрацентрифугирования имеют большое значение для исследования полидисперсности систем. Изучением полидисперсности устанавливается количественное распределение частиц по размерам (кривая, распределения) — определяется относительное содержание в системе фракции частиц различного размера. Такого рода задачи решаются как при изучении теоретических вопросов, так и в производственной практике. [c.313]

    Изложенный материал показывает, что рефрактометрия прочно вошла в арсенал методов структурной химии. Измерение показателей преломления позволяет решать самые разнообразные задачи — от исследования водородной связи до определения структурных формул силикатов. [c.280]

    Исследованиями установлено, что не все производственные задачи решаются по такой схеме. Не единичны случаи, когда из-за дефицита времени оператор принимает ошибочное решение и травмируется. При этом в 60% случаев травмирующий фактор проявляется внезапно. [c.89]

    Микробиологические исследования. На первом этапе определяются микробиологические, биохимические и физико-химические характеристики процесса на микроуровне. Основная задача подобных исследований заключается в нахождении наиболее вероятного механизма протекания процесса с выбором модели кинетики и оценкой констант. На этом же этапе решаются задачи выбора эффективных культур и микроорганизмов и оптимизации питательных сред. Наиболее быстрое решение указанных задач возможно лишь с использованием вычислительной техники, с помощью которой удается быстро просматривать конкурирующие механизмы протекания процесса биосинтеза, оценивать кинетические константы и выбирать оптимальный состав питательных сред. В настоящее время использование вычислительной техники на этом этапе исследований позволяет в некоторых случаях автоматизировать эксперимент, что существенно увеличивает эффективность научных исследований. [c.44]

    Изучение электронного строения атомов начинается с описания в рамках одноэлектронного приближения оболочечной модели. Переходя от теории атома к теории молекул, естественно сохранить ту же последовательность изложения. Под атомными функциями далее понимают функции, точка центрирования которых совпадает с ядром. Явный вид волновой функции в общем случае отличен от вида функции свободного атома. Будем считать, что атомная задача решена известны численные характеристики различных атомных величин, включая и значения орбитальных энергий. Особый интерес представляют слабосвязанные атомные электроны, волновые функции которых наиболее существенным образом деформируются в ходе образования химической связи. Разделение электронов на более и менее существенные не всегда однозначно, приходится делать те или иные допущения, справедливость которых впоследствии проверяется на уровне точных расчетов. Примером тому может служить исследование роли -электронов атомов переходных металлов в энергии связи молекул. [c.208]

    С экспериментальной точки зрения нахождение константы скорости элементарного процесса является одной из самых фундаментальных задач. Эта задача решается без труда в случае простых реакций и неизмеримо усложняется в случае быстрых многостадийных процессов. За последние годы достигнут существенный прогресс в этом направлении, и исследование кинетики даже сложного процесса сегодня перестало быть камнем преткновения для исследователя. [c.3]

    Эта задача решается с помощью таких приемов, как, например, деструктивное окисление, озонирование, гидрирование, ароматизация и др., цель которых превратить неизвестное вещество в известные или более простые, а также с помощью физико-химических методов исследования. [c.249]

    Зависимость адсорбции от концентрации может быть установлена на основании опытных данных при исследовании изменения поверхностного натяжения от концентрации. Соответствующую задачу решают обычно графическим путем. На графике (рис. 117) кривая АВ представляет собой a=f( ). Здесь выбирают ряд точек М, М, Р в т. д., в которых желательно определить [c.345]

    В принципе важно было бы учесть в атомных амплитудах и перераспределение электронной плотности. Эту задачу решить нелегко прежде всего потому, что определение распределения р(г) в ячейке, а значит, и области, относящейся к каждому атому, само является конечной целью структурного исследования. Итерационный процесс применить здесь крайне трудно, так как поправки к fj каждого атома пришлось бы на каждом шаге итерации находить в численном виде. Приближенный метод, получающий все более широкое распространение, заключается в так называемом мультипольном представлении распределения электронной плотности по атому, т. е. в виде суммы подходящих функций, содержащих не только радиальные, но и азимутальные множители с численными параметрами, подлежащими уточнению. Фурье-преобразование мультипольного представления р/ (г) дает атомную амплитуду / (Н) также в виде суммы функций, в которые входят те же численные параметры. Ути параметры уточняются вместе с координатами атомов и другими константами в общей схеме МНК, описанной выше .  [c.183]


    Отечественный индустриальный метод рулонирования, успешно применяемый более трех десятилетий, технологически связан с возникновением значительных пластических деформаций в стадии изготовления и монтажа. В связи с этим возникает практическая необходимость оценки напряженно-деформированного состояния рулонируемых листовых конструкций на всех стадиях работ, вплоть до предельного состояния или условного разрушения. Это необходимо для исследования действительной работы стальных конструкций резервуаров, определения их фактической несущей способности и выявления ресурса прочности несущих элементов, в первую очередь стенки резервуаров, а следовательно,оценки их надежности в условиях эксплуатации. Эта задача решается с учетом результатов выполненных натурных экспериментальных исследований. Большая ин- [c.166]

    Органическая химия возникла как самостоятельная наука в начале XIX в., как химия, по выражению Берцелиуса, растительных и животных веществ . В последующие десятилетия органическая химия частично отошла от этой задачи, обратив свои силы в значительной мере на синтетическое получение разнообразных соединений углерода, в том числе и не встречающихся в природе. Однако химики-органики никогда не теряли интереса к исследованию веществ, производимых живой природой, в меру сил и возможностей стараясь познать их строение и в конечном итоге воспроизвести синтетически. По мере своего развития органическая химия могла ставить перед собой и решать все более сложные задачи по исследованию природных веществ. [c.337]

    Для того чтобы отыскать весовую функцию стационарного объекта, необходимо, как и в нестационарном случае, решить краевую задачу для уравнений в частных производных, подобную задаче (3.2.5), (3.2.6), хотя и с постоянными во времени коэффициентами. Решить такую задачу, конечно, гораздо сложнее, чем обыкновенное дифференциальное уравнение (3.2.16) с граничным условием (3.2.17). Таким образом, при исследовании стационарных объектов, математическая модель которых включает дифференциальные уравнения в частных производных (объекты с распределенными параметрами), передаточная функция является наиболее простым и эффективным средством описания оператора. Ее отыскание — главная задача при исследовании динамики объекта. [c.101]

    Рассмотрение малых деформаций при исследовании устойчивости в малом приводит к возможности строить эту теорию на основе линейных уравнений. Более сложной задачей является исследование устойчивости в большом, сводящееся к решению нелинейных уравнений. Однако более богатая картина деформаций в этом случае позволяет решить вопросы, на которые теория устойчивости в малом ответить не может. [c.313]

    Задача решается в двух направлениях разработка и исследование гидравлических числовых систем программного управления (доц. [c.45]

    На основе теор. представлений 1-й пол. 19 в. удалось построить удовлетворит, классификацию орг. соединений. Однако ни одна из ранних теорий не была в состоянии об],яс нить широко распространенное среди углеродистых в-в явление, названное тогда же изомерией. Эту кардинальную задачу решила теория хим. строения, впервые сформулированная А. М. Бутлеровым в 1861. Ее осн. положения а) в орг. молекулах атомы соединяются между собой в определ. порядке согласно их валентности, что обусловливает хим. строение молекул б) хим. и физ. св-ва орг. соединений зависят как от природы и числа входящих в их состав атомов, так и от хим. строения молекул в) для каждой эмпирич. ф-лы можно вывести определ. число теоретически возможных структур (изомеров) г) каждое орг. соед. имеет одну хим. ф-лу, к-рая дает представление о си пах этого соед. д) в молекулах существует взаимное влияние агомов как связанных, так и иепосредственно друг с другом не связанных. Теория хим. строения сразу же стала действенным орудием исследования она дала возможность не только объяснять, но и предвидеть разл. случаи изомерии, предугадывать возможные направления р-ций, делать заключения об их механизмах, прогнозировать существование новых соед. н проводить их планомерный синтез. С этой теории начинается новый период в развитии X., характеризующийся тем, что из науки преим. аналитической она превращается в науку синтетическую. X. этого периода обычно наз. классической. [c.652]

    Можно заметить, что задачи экспериментального исследования близки к задачам, которые решает система автоматизированного уиравления процессами ферментации в промышленности. Это и неудивительно, так как оптимальное управление всегда связано со сбором и обработкой информации и отработкой закона управления. При этом проведение экспериментальных исследований в лабораторных условиях, как правило, осуществляется при более высоком уровне оснащения измерительной техникой (следовательно, больший объем перерабатываемой информации) более высокой точности измерений и большем числе контуров управления процессом. [c.268]

    В случае больших Ка предполагалось, что ядро жидкости (внутренняя область полости, удаленная от пограничных слоев на стенках) является изотермическим и вращается как твердое тело, т. е. с постоянной завихренностью. Это допущение выдвигалось ранее [190] при исследовании свободноконвективного течения в горизонтальном круглом цилиндре, а позднее [205] для ячеистого течения между двумя параллельными горизонталь- ными пластинами. При рассмотрении ядра течения в вертикальной полости [17] показано, что если оно не является застойной зоной, то завихренность там остается постоянной. Правда, это доказательство справедливо только для случая изотермического ядра. Кроме того, граница области ядра должна представлять собой замкнутую линию тока, которая не проникает в вязкий граничный слой вблизи поверхностей. В работе [207] эта задача решена численно с использованием метода, основанного на разложениях по ортогональным полиномам. Результаты этих исследований сравнивались в работе [207] с экспериментальными данными [182], и было установлено достаточно хорошее их соответствие. В работе [16] рассмотрено также турбулентное течение в вертикальной полости. [c.255]

    Известно, что при проектировании разработки нефтяных месторождений важно знать характер и динамику приемистости, характер и степень охвата пластов закачкой не только на стадии выхода месторождений из разведки, но и в процессе разработки при отсутствии широкомасштабных промысловых исследований. В этих случаях задача решается посредством использования геолого-статистических моделей, построенных по аналогичным объектам. [c.9]

    Следующая задача, рассматриваемая в этой части книги, заключается в апробации бифуркационной теории свертывания и физической теории структурной организации непосредственно на белках путем априорного расчета их нативных конформаций по известной аминокислотной последовательности. Впервые эта задача решалась A.A. Завальным и мною при исследовании конформационных возможностей фрагмента Leu -Су низкомолекулярного белка нейротоксина П [1]. [c.414]

    Масс-спектрометрический анализ дает возможность решать и более сложные задачи при исследовании углеводов. Так, например, удается на основании одного только масс-спектра определять структуру дисахаридов, поскольку ряд пиков в масс-спектрах дисахаридов с разным типом связи между моносахаридами различается. [c.595]

    При анализе полимеров чаще всего возникают две задачи [51] диагностика сополимера или разветвленного гомополимера и исследование их полидисперсности, а также определение присутствующих в сополимере гомополимеров. Эти задачи решают сравнением хроматографической подвижности анализируемых фракций полимера с [c.105]

    Фирма Эссо (Линден, Нью-Джерси) ставила целью исследования в области топливного элемента разработку таких элементов, которые могли бы найти широкое применение. Чтобы решить эту задачу, программа исследования была на- [c.419]

    Одномерные, в том числе многослойные, задачи решают аналитически с использованием операционного метода, метода термического четырехполюсника или функций Грина, тогда как для многомерных моделей наиболее пригодны численные методы. Ниже будут рассмотрены некоторые особенности применения аналитических и численных методов при исследовании теплопередачи в твердых телах, содержащих скрытые дефекты типа нарушения сплошности. [c.56]

    Высокие темпы развития химических и нефтехимических производств, создание совершенной технологии требуют решения одной из важнейших задач промышленности сокращение потребления воды, расходуемой для отвода избыточного тепла технологических процессов. В большой степени эта задача решается при внедрении в производство теплоъбменных аппаратов воздушного охлаждения (ABOJT Отечественные конструкции ABO разработаны институтом В1таИнефтемаш, в котором на базе обширных экспериментальных исследований созданы теоретические основы теплового и аэродинамического расчета аппаратов. [c.4]

    В работе расс,мотрена задача о растекании конуса подошвенной воды после остановки газовой скважины. Предполагается, что по сравнению со временем растекания конуса давление в газонасыщенной части пласта после оста1юв-ки скважины выравнивается практически мгновенно. Практика газодинамических исследований некоторых газовых залежей (например, сеноманские отложения Медвежьего, Ямбургского, Уренгойского месторождений) показывает, что такое пр>едположение во кшогих слу чаях является вполне оправданным. Если также пренебречь изменением веса столба газа вдоль поверхности газоводяного контакта, то тогда процесс растекания конуса описывается квазилинейным уравнением типа уравнения безнапорной фильтрации, а в качестве начального условия задается форма конуса перед остановкой скважины. Задача решалась методом интегральных соотношений из того соображения, что для похожей за- [c.214]

    Выше были рассмотрены вопросы динамики электрогидравлических следящих приводов с дроссельным регулированием на основе линейных математических моделей, получаемых без учета существенных нелинейностей. Такой подход к исследованию и расчету приводов позволяет определить влияние постоянных времени и коэффициентов усиления элементов на устойчивость и качество переходных процессов, выбрать коэффициент усиления обратной связи в зависимости от требуемой точности управления каким-либо объектом и, наконец, провести сравнение динамических свойств приводов с различными корректирующими элементами н дополнительными обратными связями. Перечисленные задачи решаются методами анализа и методами синтеза по логарифмическим амплитудным частотным характеристикам разомкнутого контура привода. Результаты расчетов линейных моделей при малых отклонениях переменных величин лучше подтверждаются экспериментами при совершенной конструкции и технологии изготовления приводов и при меньших отличиях действительных характеристик нагрузок от приняпых в исследуемой модели. [c.405]

    Дипломная работа посвящена актуальной проблеме поиску оптимальных структур красителей в ряду азокрасителей. Задачей исследования являлось нахождение взаимосвязи между физико-химическими и эксплуатационными характеристиками. Эта задача решалась путем создания комплекса программ множественного регрессионного анализа с последующей оптимизацией полученных функций по совокупности физикохимических свойств. [c.22]

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии, что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии, фотохимии, катализе, в изучении процессов окисления и горения, строения и реакционной способности орг. своб. радикалов и ион-радикалов, полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг струк-турно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и /-элементов позволяет определить валентное состояние иона, найти симметрию кристаллич. Поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов. Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уши-рении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр, электронный обмен между ион-р калами и исходными молекулами типа + А. < А + Д , лигандный обмен типа LK + L + L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или Фупп атомов в радикалах и т. д. [c.450]

    С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные исследования заключаются в определении структуры неизвестного соединения, в частности, природных веществ, метаболитов лекарственных препаратов и других ксенобиотиков, синтетических соединений. Масс-спектрометрический анализ дает важную информацию для определения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул. Масс-спектрометрия является наиболее чувствительным спектроскопическим методом молекулярного анализа по сравнению с другими рассмотренными методами, такими, как ЯМР- и ИК-спектроскопия. Для количественного анализа масс-спектрометрию используют при разработке арбитражных методов и методов сравнения, при количественном определении, например, полихлордибензодиоксинов (ПХДД) и наркотических препаратов. Масс-спектрометрия сегодня развивается очень быстро, охватывая все более широкие области применения, например анализ биомакромолекул (разд. 9.4.4). [c.255]

    В последние годы все большее внимание начинает уделяться созданию методов расчета конформационных состояний боковых цепей аминокислотных остатков. Пробуждающийся интерес к этой задаче оправдан, поскольку именно боковые цепи, в которые входят две трети атомов Селковой молекулы, в значительной мере определяют форму основной цепи и нативную конформацию белка в целом, а следовательно, его биофизические и биохимические свойства. Однако в подавляющем большинстве случаев сейчас, как и ранее, авторы теоретических и эмпирических исследований структурной организации пептидов и белков продолжают исходить из предположения, что конформационное состояние основной цепи определяет ориентации боковых цепей, а не наоборот. Если бы это было действительно так, то структуры всех белков, имеющих одинаковые основные цепи, мало чем отличались бы друг от друга. По аналогичной причине в рассматриваемых ниже работах, которые посвящены полной реконструкции трехмерной структуры белка, задача решается чисто формальным образом, вне связи с физикой реального механизма свертывания белковой цепи в нативную конформацию. Ориентации боковых цепей рассчитываются при фиксированной форме основной цепи, которая [c.525]

    Флуоресцентная спектроскопия находит широкое применение в исследованиях природы и состояния сложных субмолекулярных объектов, таких как мицеллы, лнпосомы, биологические клетки и их компоненты [1]. По своим аналитическим возможностям она во многом лидирует, позволяя регистрировать излучение одного кванта в объеме менее 1 мкм , а также фиксировать молекулярные явления в фемтосекундной шкале времени. В исследованиях субмолекулярных объектов часто используются вспомогательные инструменты - флуоресцентные зонды. Флуоресцентный зонд - это молекула, способная при поглощении кванта света оптического диапазона испускать новый квант света. Характеристики излучения подобных молекулярных устройств (его интенсивность, положение и полуширина полосы в спектре и пр.) всегда несут определенную информацию об объекте. Задача исследователя состоит в адекватной интерпретации полученной информации. Однако часто интерпретация информации представляется сложной задачей, поскольку излучение молекулы зонда, как правило, отражает состояние сразу нескольких физических параметров микроокружения. Поэтому к химической архитектуре зонда и его флуоресцентным свойствам существует ряд жестких требований. В частности, важным требованием (если не основным) является экстракция информации об изучаемом параметре микроокружения. Эта задача решается путем фильтрации информации, а также увеличения количества каналов ее получения. [c.385]

    Важным вопросом является установление взаимного расположения функциональных групп, от которого зависят гибкость макромолекул и способность Ах к кристаллизации. В некоторых случаях такие сведения могут быть получены при исследовании продуктов деструкции, однако чаще всего эта задача решается изучением отношения самой макромолекулы к специальным реактивам или при помощи спектральных методов. Например, известно, что периодат-ные ионы не окисляют СНгСН (ОН) СНзСН (ОН), хотя такая реакция успешно протекает в случае СНгСИ (ОН) СН (ОН) СНг , являющегося 1, 2-гликолем  [c.18]

    Опыт использования теории течения для решения конкретных задач и сопоставление результатов с опытными данными показали, что при получении точных количественных данных в теоррш пластичности небезразличным является выбор связи между обобщенными критериями напряжений и деформаций при использовании диаграммы деформирования. Часто используют теорию в виде связи между интенсивностью напряжений а. и соответствующими деформациями. Однако в некото-рьЕХ случаях наблюдаются заметные отклонения в поведении металлов от этой теории. Например, при исследовании изгиба толстого надрезанного бруса, что соответствовмо работе соединения встык с непроваром, задача решалась как для плоского деформированного состояния. [c.111]

    Ниже изложены результаты, полученные по различным программам в области обеспечения надежности элементов реакторов действующих АЭС. Результаты подобраны таким образом, чтобы отразить возможность решения следующих задач исследование выявляемости дефектов при заданных условиях контроля сравнительный анализ разных методов контроля исследование технологии контроля с целью повыщения его эффективности исследование влияния человеческого фактора на результаты контроля. Все перечисленные задачи решали применительно к условиям реакторов типа ВВЭР и РБМК. [c.155]


Смотреть страницы где упоминается термин Задачи, решаемые при исследовании ХТС: [c.163]    [c.124]    [c.215]    [c.243]    [c.121]    [c.282]    [c.98]    [c.5]    [c.100]    [c.50]    [c.58]   
Смотреть главы в:

Основы химической технологии -> Задачи, решаемые при исследовании ХТС




ПОИСК





Смотрите так же термины и статьи:

Задачи исследования



© 2025 chem21.info Реклама на сайте