Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита от межкристаллитной коррозии

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]


    Так, в работе [158] было показано, что сталь, обычно склонная к межкристаллитной коррозии, не проявляет этой склонности в течение нескольких тысяч часов при анодной защите ее в сульфатно-медном растворе. При кипячении этой же стали в сульфатно-медном растворе без анодной защиты межкристаллитная коррозия обнаруживается через 24 ч. [c.127]

    В ЧССР разработан ряд стандартов ЧСН, которые являются руководящими документами для оценки коррозионной стойкости металлов и эффективности защиты. Испытания материалов сосредоточены под номерами, начинающимися с 0381... эти стандарты охватывают испытания в природных и эксплуатационных условиях, в конденсационной камере, в соляном тумане, в газовой среде при высоких температурах, в жидкостях и парах, определение степени коррозии защитных покрытий на стали, стойкости против межкристаллитной коррозии, определение толщины металлических покрытий и т. д. [c.92]

    При воздействии на нержавеющие стали температур в опасном интервале от 450 до 800°С они становятся склонными к межкристаллитной коррозии (МКК). Одним из наиболее эффективных и широко применяемых методов защиты от МКК является легирование стали сильными карбидообразующими элементами, такими, как титан и ниобий. Эти элементы связывают углерод в прочные карбиды, тем самым предотвращая образование карбидов хрома и обеспечивая достаточную концентрацию хрома в твердом растворе. Содержание титана принимают равным Т1 = 5 (С—0,02) /о, ниобия ЫЬ=10 (С—0,02)%, где 0,02%—максимальное содержание углерода, при котором сохраняется стойкость стали против МКК. Однако верхний предел содержания титана в аустенитных сталях не должен превышать 0,8% во избежание образования феррита. Преимуществом ниобия перед титаном является более высокая устойчивость его карбидов к растворению при повышении температуры закалки и к выгоранию при сварке, однако ниобий придает сталям склонность к горячим трещинам при сварке. [c.44]

    Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности. [c.4]


    Чистый алюминий мягок и непрочен. Легируют его в основном для повышения прочности. Для того чтобы можно было воспользоваться высокой коррозионной стойкостью чистого алюминия, высокопрочные сплавы покрывают слоем чистого алюминия или более коррозионностойкого сплава (например, сплава Мп—А1 с 1 % Мп), который более электроотрицателен в ряду напряжений, чем основной металл. Наружный слой называют плакирующим, а сам двухслойный металл — алькледом. Плакирующий металл катодно защищает основу, выполняя функцию протекторного покрытия. Его действие аналогично действию цинкового покрытия на стали. Помимо катодной защиты от питтинга покрытие из менее благородного металла защищает также от межкристаллитной коррозии и коррозионного растрескивания под напряжением (КРН). Это особенно важно, когда основной высокопрочный сплав приобретает склонность к этим видам коррозии в процессе производства или при случайном нагреве до высокой температуры. [c.342]

    Как отмечалось выше, плакирование сплавов может обеспечивать их катодную защиту от межкристаллитной коррозии и КРН. Для предупреждения КРН эффективны сжимающие поверхностные напряжения, поэтому на практике изделия иногда подвергают нагартовке путем дробеструйной обработки. [c.354]

    Грибоедов Ю. Н. Поверхностная защита аустенитных сталей от межкристаллитной коррозии. — Металловедение и термическая обработка металлов, 1958, № 3, с. 42-48. [c.115]

    ДУРАЛЮМИНЫ, сплавы на основе А1, содержащие 1,4— 13% Си, 0,4—2,8% Мг, 0,2—1,0% Мп, иногда 0,5—6,0% 31, 5—7% га, 0,8—1.8% Ре, 0,02—0,35% Т1 п др. Наиб, прочные (предел прочности а. до 600 МПа) и найм, коррозионностойкие иэ всех алюминиевых сплавов. Склонны к межкристаллитной коррозии. Листовой Д. в целях защиты от коррозии плакируют алюминием. Не обладают хорошей свариваемостью. Применяются гл. обр. в авиастроении для изготовления нек-рых деталей турбореактивных двигателей. [c.198]

    Коррозионные проблемы в большинстве случаев рассматриваются не в общем виде, а применительно к металлам, для которых они наиболее характерны или технически важны. Так, атмосферная, биогенная и почвенная коррозия разбираются на примере углеродистых сталей, закономерности питтинговой и межкристаллитной коррозии, а также коррозионного растрескивания — на примере нержавеющих сталей. Описание каждого вида коррозии во всех случаях завершается изложением соответствующих практических мер,антикоррозионной защиты. [c.15]

    Анодная защита может предотвращать локальные виды коррозии, например, межкристаллитную коррозию нержавеющих сталей, коррозию под напряжением углеродистых и нержавеющих сталей, питтинг, коррозионную усталость металлов и сплавов. [c.199]

    Анодная защита и межкристаллитная коррозия нержавеющих сталей [c.17]

    В связи с развитием ракетной техники появилась необходимость в изыскании ингибиторов для дымящей азотной кислоты, которая применяется в качестве одного из компонентов ракетного топлива (окислителя). По данным [133], в дымящей азотной кислоте [НЫОз (82,8%), КОг (13%) и НгО (3,2%), в некоторых опытах концентрацию МОг повышали до 21%] хорошими ингибирующими свойствами по отношению к алюминиевым сплавам и некоторым нержавеющим сталям [Сг (18—21), N1 (8- 11), Мо (l- i,75), (1 1,75), С (0,28- 0,55%] обладает фтористоводородная кислота (от 0,2 до 1%). Скорость коррозии нержавеющих сталей в окислителе указанного состава уже при содержании НР = 0,5% практически равна нулю. Однако еслп нержавеющая сталь предварительно подвергается нагреву, способствующему межкристаллитной коррозии (450-+900°С), добавка НР к дымящей азотной кислоте усиливает коррозию. Алюминиевые сплавы в этих условиях абсолютно з стойчивы. Стали, содержащие менее 15% Сг (без никеля), не защищаются НР в дымящей азотной кислоте. С увеличением содержания в стали хрома (Ст. 430, 446) защита с помощью НР улучшается, т. е. они, по мнению авторов, могут применяться. [c.214]

    Анодная защита и межкристаллитная коррозия [c.121]

    При смещении значений потенциалов стали в область перепассивации наряду с общим растворением наблюдалась и межкристаллитная коррозия. Полученные результаты показывают, что вследствие наличия межкристаллитной коррозии у отпущенной стали как в транспассивном состоянии, так и в области, отвечающей переходному состоянию из активного в пассивное, надежным методом защиты от общей и межкристаллитной коррозии является поддержание потенциала стали в области устойчивого пассивного значения. Так как протекание процесса межкристаллитной коррозии зависит от значения потенциала стали в данном растворе, то можно защитить сталь от межкристаллитной коррозии даже в растворах, обычно применяющихся для определения склонности к межкристаллитной коррозии, путем [c.124]


    Защита от межкристаллитной коррозии [c.108]

    Как и при межкристаллитной коррозии, борьба с коррозией под напряжением может проводиться путем а) перевода всех участков металла в пассивное состояние с близкими скоростями растворения б) создания такой структуры сплавов, которая блокирует развитие коррозии под напряжением в) катодной защиты  [c.64]

    Теория многоэлектродных электрохимических систем имеет общий характер и позволяет объяснять явления, наблюдаемые в микромасштабах (межкристаллитная коррозия) и макромасштабах (механизм электрохимической защиты). [c.32]

    Теория многоэлектродных элементов имеет общий характер и позволила объяснить явления межкристаллитной коррозии и механизм электрохимической защиты. [c.40]

    В противоположность катодной защите при анодной защите обычно имеются только узко ограниченные области защитных потенциалов, в которых возможна защита от корозии. По этой причине при анодной защите нужно в общем случае применять защитные установки с регулированием потенциала. Область защитных потенциалов может быть сильно сужена особыми процессами коррозии, например язвенной (сквозной) коррозией коррозионностойких сталей под влиянием хлоридов. В таком случае анодная защита иногда практически уже не может быть применена. Склонность к местной коррозии, обусловленная свойствами материала, тоже может сделать анодную защиту неэффективной. Сюда относится, например, склонность к межкристаллитной коррозии у коррозионностойких высокохромистых сталей и сплавов на основе никеля. [c.390]

    Княжева В. М., Шаповалова Т. Ю. Совещание по разработке методов ускоренных электрохимических испытаний нержавеющих сталей на устойчивость против межкристаллитной коррозии. —Защита металлов, 1980, К 6, С. 752-754. [c.116]

    Конструкция оборудования, работающего в коррозионной среде, должна предусматривать возможность защиты от локальных видов коррозии, таких как контактная, щелевая, язвенная, струевая. Выбираемые материалы не должны быть подвержены селективно-избирательным видам коррозии (коррозионное растрескивание, питтинговая и язвенная коррозия, межкристаллитная коррозия). Назначение уровня действующих нагрузок должно производиться с учетом допустимых пределов по коррозионно-механической прочности материалов. [c.80]

    ОЗХ17Н14МЗ-ВО. Эта сталь рекомендуется для работы до 300 С. Опыт применения хромоникелевых сталей с содержанием углерода 0,020—0,030 % показал, что для надежной защиты низкоуглеродистых сталей от межкристаллитной коррозии при длительной работе выше 300 °С необходима их стабилизация титаном или ниобием. [c.24]

    В последнее время разработаны экономичные и совершенные методы определения МКК нержавеющих сталей 42—44], а также электрохимический способ количественного определения склонности нержавеющих сталей к МКК. Полученные результаты убедительно свидетельствуют о том, что межкристаллитная коррозия нержавеющих сталей протекает в ограниченной области потенциалов. Поэтому нет оснований опасаться возможного проявления МКК в области устойчивой пассивности, т. е. в условиях анодной защиты. Более того, сталь, склонная к МКК, может уснешно эксплуатироваться в условиях анодной защиты. Об этом изложено в работе П. Д. Томашова, Г. П. Черновой и О. П. Марковой [39]. Ими исследована возможность защиты стали 2Х18Н9 от межкристаллитной коррозии смещением потенциала, достигаемым анодной поляризацией. [c.18]

    Такпм образом, применяя анодную защиту, можно предотвратить межкристаллитную коррозию сталей, склонных к этому виду коррозии, что подтверждается дальнейшими работами Франса и Грина [45], Штрайхера [46]. [c.18]

    Княжева В. М. Межкристаллитная коррозия.//Новые достижения в области теории и практики противокоррозионной защиты.—М. Наука, 1981. [c.273]

    Недостаток нержавеющих сталей — их склонность при некоторых определенных условиях к межкристаллитной коррозии, питтинговой коррозии и коррозионному растрескиванию. Эти опасные виды коррозионного разрушения происходят главным образом вследствие частичного (местного) нарушения пассивного состояния. Поэтому необходимо выяснить влияние анодной поля ризации на эти виды коррозии. Так как метод анодной защиты только начинает развиваться, то пока можно привести первые предварительные данные по этому вопросу. [c.121]

    Согласно теории, борьба с межкристаллитной коррозией может быть обеспсчс[ а путем а) перевода в пассивное состояние с близкими скоростями растворения тела зерна и границ зерен б) создания такой структуры сплавов, которая блокирует межкристал-читную коррозию в) катодной защиты г) устранения внутренних растягивающих напряжений д) изменения состава среды и [c.58]

    Достоверность подобного электрохимического механизма межкристаллитной коррозии алюминиевых сплавов, содержащих медь, подтверждается тем, что на основе этой теории удается предсказать методы борьбы с этим опасным видом разрушения. Если бы удалось создать в системе электрод с более отрицательным потенциалом, зоны у границ зерен, вероятно, перестали бы разрушаться. Это можно, иапример, осуществить, цонизив потенциал тела зерна. Опыты подтвердили, что, если в такой сплав ввести небольшое количество магния, склонность сплава к межкристаллитной коррозии резко снижается. В этом случае коррозия концентрируется в основном на теле зерен, занимающих основную часть поверхности, и плотность тока у границ ничтожна. На аналогичном принципе и основана электрохимическая защита протекторами или плакирующими слоями, обладающими более отрицательным потенциалом. [c.260]


Библиография для Защита от межкристаллитной коррозии: [c.116]    [c.117]   
Смотреть страницы где упоминается термин Защита от межкристаллитной коррозии: [c.372]    [c.72]    [c.9]    [c.133]    [c.318]    [c.313]    [c.257]    [c.257]    [c.126]    [c.102]    [c.9]    [c.181]    [c.86]    [c.128]   
Смотреть главы в:

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т1 -> Защита от межкристаллитной коррозии

Коррозия и защита от коррозии -> Защита от межкристаллитной коррозии




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Межкристаллитная коррози

Межкристаллитная коррозия



© 2025 chem21.info Реклама на сайте