Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значение перенапряжения Пассивность

    Условия электролиза. Реакция электрохимического окисления хлоратов протекает при высоких положительных потенциалах (более 2,0 В отн. н. в.э.), поэтому анод должен обладать высоким перенапряжением кислорода и сохранять пассивные свойства при этих значениях потенциала. Лучше всего этим требованиям удовлетворяет гладкая платина. В промышленности, как правило, используют платино-титановые аноды. [c.187]


    Если сравнить потенциалы этих процессов, с учетом их перенапряжений, с соответствующими потенциалами важнейших металлов, то станет очевидным, что растворение даже таких электроположительных металлов, как медь и серебро, протекает при менее положительных значениях потенциалов, чем приведенные потенциалы окисления. Причина нерастворимости металла или сплава при анодной поляризации, в то время как его потенциал в данных условиях должен быть достаточно отрицательным, заключается в пассивности электрода. [c.249]

    На металлах, растворяющих водород, наблюдается наименьшее значение перенапряжения водорода Из данных, приведенных в табл. И, видно, что при выделении ислорода на платиновых металлах перенапряжение имеет наиболее высокие значения и наиболее низкие на металлах железной группы. Выделение кислорюда возможно тюлько на пассивных электродах, не растворяющихся в данных условиях при анодной поляризации (платиновые металлы и золото в кислотах, растворах солей и щелочей). В щелочах и карбонатах стоек никель и менее устойчиво железо. В растворах сульфатов и серной кислоты, а также в хроматах устойчив свинец и его сплавы, содержащие до 12 /о сурьмы. Графитовые аноды стойки в конденсированных хлоридах. Весьма стойки аноды из плавленой магнитной закись-окиси железа— магнетита. [c.38]

    С другой стороны, согласно адсорбционной теории [16], ионы С1 адсорбируются на поверхности металла, конкурируя с растворенным О2 или ОН . Достигнув поверхности металла, С1 способствует гидратации ионов металла и облегчает переход их в раствор, в противоположность влиянию адсорбированного кислорода, который снижает скорость растворения металла. Иначе говоря, адсорбированные ионы С1 повышают ток обмена (снижают перенапряжение) для анодного растворения перечисленных металлов по сравнению с наблюдаемым для поверхности, покрытой кислородом. В результате железо и нержавеющие стали часто невозможно анодно запассивировать в растворах, содержащих значительные концентрации С . Напротив, металл продолжает растворяться с высокой скоростью как при активных, так и при пассивных значениях потенциала. [c.84]

    Понижение значения работы пластической деформации Р будет происходить в результате увеличения или предела текучести, или скорости механического упрочнения в вершине трещины. В результате каждый из этих факторов при постоянном значении т) будет понижать величину Кх сс и, следовательно, понижать степень сопротивления материала коррозионному растрескиванию. Увеличение перенапряжения анодной реакции (потенциал металла становится более электроположительным) при определенном значении работы пластической деформации Р, согласно уравнению (1.4.3.3), будет приводить к понижению сопротивления коррозионному растрескиванию. Величина анодного перенапряжения является функцией электрохимических условий внутри трещины, контролирующих активно-пассивные переходы, от которых в свою очередь зависит, будет ли происходить растрескивание. Следовательно, коррозионное растрескивание [c.64]


    Если у металла или сплава потенциал пассивации более отрицательный, чем потенциал катодного процесса водородной деполяризации на сплаве с катодной добавкой, то вполне возможна пассивация сплава за счет водородной деполяризации. На рис. 62 приведены катодные и анодные потенциостатические кривые для титана и сплава + 1% Р1 в 40%-ной Н23 04 нри 25 и 50° С [134]. Из этих кривых видно, что перенапряжение водорода при введении в титан 1 % Р1 снижается на 350—400 мв. Вследствие этого стационарный потенциал сплава титана с платиной смещается в положительную сторону, в область пассивных значений, где процесс анодного растворения титана сильно заторможен. Это обеспечивает высокую коррозионную стойкость сплава титана с платиной. [c.90]

    При легировании стали рением сильно снижается перенапряжение выделения водорода и коррозионная стойкость возрастает вследствие смещения потенциала стали в положительную сторону, в область пассивных значений. Рений является эффективной катодной добавкой, аналогичной палладию и платине. [c.159]

    Горбунова и Данков считают, что в начале электролиза ток расходуется на заряжение электрического двойного слоя до тех пор, пока не возникает возможность образования двухмерных зародышей если грань кристалла пассивна, тогда первичные зародыши возникают при несколько большей разности потенциалов, т. е. перенапряжении. По мере образования двухмерных зародышей появляется большое количество активных мест, и потенциал катода падает до некоторого значения, определенного энергией. [c.147]

    Наблюдается прямое соответствие между рядом перенапряжения водорода на исследуемых металлах и способностью их переводить титан в пассивное состояние при контактировании. По увеличению минимального значения Т к/ т , необходимого для пассивирования Ti, исследуемые металлы располагаются в соответствии с увеличением перенапряжения водорода на них. [c.300]

    Согласно законам электрохимической кинетики, скорость анодного растворения металла должна возрастать при увеличении потенциала электрода. Однако так происходит не всегда. На электродах из большинства металлов при соответствующем составе раствора и при достаточно высоких потенциалах наблюдается нарушение кинетических закономерностей при возрастании потенциала скорость растворения растет медленнее, чем должно быть. Часто наблюдается даже падение скорости растворения, а при постоянной плотности анодного тока скачком возрастает потенциал электрода. Такое состояние металла, нри котором скорость анодного растворения нри постоянном потенциале понижена илп перенапряжение растворения повышено против их значений для нормального состояния, называется пассивным состоянием. Пассивное состояние может наблюдаться и без пропускания анодного тока, при погружении металла в систему с высоким окислительным потенциалом, например железа в концентрированную азотную кислоту. Переход железа в пассивное состояние прп погружении его в азотную кислоту был описан еще М. В. Ломоносовым [263] 230 лет назад. [c.129]

    По адсорбционной теории, СГ адсорбируются на поверхности металла, конкурируя с растворенным Оз или ОН". Находясь в контакте с поверхностью металла, хлор-ион благоприятствует гидратации ионов металла и облегчает переход ионов металла в раствор. Адсорбированный кислород оказывает противоположное влияние и понижает скорость растворения металла. Другими словами, адсорбированные хлор-ионы увеличивают ток обмена (понижают перенапряжение) анодного растворения упомянутых металлов по сравнению со значением, которое наблюдается для поверхности, покрытой кислородом. Этот эффект настолько отчетливо выражен, что железо, хром и нержавеющие стали в растворах, содержащих значительные концентрации СГ, не могут анодно пассивироваться. Металл продолжает растворяться в соответствии с законом Фарадея, образуя ионы низшей валентности. Критическая плотность тока при этом исключительно высока. Нарушение хлор-ионом пассивности на отдельных участках происходит легче, чем по всей пассивной поверхности, причем предпочтительные места определяются, по-видимому, небольшими изменениями в структуре и толщине пассивной пленки. Образуются мельчайшие аноды активного металла, которые окружены большими катодными участками пассивного металла. Разность потенциалов между такими участками велика — порядка 0,5 в или больше. Создающийся в результате этого элемент называется а к т и в и о-п а с с и в н ы м. Большие плотности тока на аноде вызывают большие скорости разрушения металла, что создает катодную защиту участка поверхности, непосредственно прилегающего к аноду. Результат фиксирования анода на определенном участке — питтинговая коррозия. Чем больше ток какого-либо питтинга и соответственно катодная защита окружающих питтинг участков, тем меньше вероятность образования в близком соседстве другого питтинга. Вследствие этого наблюдаемое число глубоких питтингов на единицу площади обычно меньше, че.м [c.72]


    НИИ металла оказывает влияние pH и температура. Если молекулы воды участвуют в процессе растворения, то с ростом pH области основных состояний металла смещаются в сторону более отрицательных значений потенциала. При этом перенапряжение анодного растворения металла в активном состоянии и состоянии перепассивации уменьшается. Скорость коррозии металла в пассивном состоянии в большинстве случаев уменьшается с ростом [c.29]

    Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, ЫОз или 80 ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен- [c.87]

    Поверхностно активные вещества, присутствующие в растворе, влияют не только на скорость электрохимического процесса, но и на структуру катодных отложений. А. Т. Баграмян при электроосаждении серебра наблюдал явление катодной пассивности граней растущего кристалла. Это явление зависит от присутствия в растворе посторонних ПАВ и исчезает при очень тщательной очистке раствора от органических примесей. При концентрировании на поверхности органических веществ в относительно больших количествах нормальный рост грани затрудняется. Продолжение роста становится возможным при повышении потенциала до значения, при котором возникают новые кристаллические зародыши. Если часть поверхности остается незапассивированной, то в этом случае повышение эффективной плотности тока ведет к увеличению перенапряжения. [c.381]

    Анодная кривая сплава Т1 — 0,2% Рс1 в условиях щели при бО С характеризуется очень широкой областью пассивного состояния, а потенциал начала развития щелевой коррозии сдвинут в положительную сторону по сравнению с критическим потенциалом для Ti в щели на 1,35 В. В то же время анодные кривые Т1 и сплава Т1 — 0,2% Р(1 в объеме раствора отличаются незначительно как по величине тока, так и по значениям критических потенциалов, хотя критический потенциал Т1 — 0,2% Р(1 все же положительнее. Эти результаты свидетельствуют о том, что меха-шизм защитного действия легированного титана сводится к накоплению палладия в условиях ограниченного объема раствора в щели и к снижению перенапряжения катодного выделения водорода. Действительно, коэффициент в уравнения Тафеля составляет для сплава Т1 — 0,2% Р(1 0,15 В, а для титана — 0,4 В, 5Г. е. более чем в 2 раза больше. [c.51]

    Обычно перенапряжение ионизации металла при растворении металлов в активном состоянии имеет низкие значения. Торможение анодного процесса вследствие затруднения диффузии в растворе ионов металла, т. е. концентрационная поляризация, исходя из установленных в электрохимии закономерностей [14, 17, 18], соответствует величине 0,0591g С, для одновалентных ионов или 0,0291д С для двухвалентных ионов (/=25 °С), где С — концентрация (точнее, активность) собственных ионов металла в растворе непосредственно у поверхности металла. Поэтому торможение анодного процесса в большинстве случаев коррозии также относительно невелико. Более значительное торможение анодного процесса может наблюдаться вследствие наступления явления анодной пассивности металла, т. е. резкого торможения анодного процесса при достижении анодом определенного потенциала в результате образования на поверхности анода адсорбционных или фазовых пассивных пленок (обычно имеющих оксидный или гидро-ксидный характер). Механизм и современная теория пассивности рассмотрены в следующей главе. [c.31]

    Состав электрол ита существенно сказывается на структуре катодного осадка. Высокая катодная поляризация и сильная адсорбция аниона, предупреждающая пассивность при электролизе растворов цианистых и других комплексных соединений (см. 32), дает возможность получать мелкозернистые осадки. Природа аниона простой соли выделяемого металла имеет иногда значение еще и потому, что перенапряжение выделения металла различно в растворах разныхН солей. Примером могут служить катодные отложения свинца, получающиеся крупнозернистыми из азотнокислых и уксуснокислых растворов, более мелкозернистыми — из растворов борофтористоводородных, кремнефтористоводородных и перхлоратцых солей, в которых перенапряжение металла больше. С повышением концентрации электролита осадки становятся более крупнозернистыми. [c.156]

    Значения pH раствора в язвочках в пределах от 2 до 4 указывают на скорость их роста от 2,5 до 3,7 мм1год. Неактивные язвы имеют pH 7—9, например при катодной защите 45, 47]. Коррозионный элемент при сквозной коррозии, представляет собою активно-пассивную систему, образованную значительно поляризованным катодом с большой поверхностью и слабо поляризованным анодом с малой поверхностью в основании язвы. Работа этого элемента подчиняется катодному контролю. Катодный процесс состоит в восстановлении Ре + до Ре2+ при значительном перенапряжении [55]. Элемент создает высокую плотность анодного тока, которая обусловливает быстрый рост объема и глубины отверстия. [c.22]

    На рис. 5 приведена кривая активации, снятая на галлиевом электроде в растворе галлата. Эта кривая имеет другой вид, чем кривые активации, снятые на цинковом электроде. На кривой рис. 5 наблюдаются максимум и площадки. Потенциал в максимуме на кривых активации достигает большого отрицательного значения. Площадки наблюдаются при потенциалах, на несколько десятых вольт более положительных, чем потенциалы восстановления ОааОз или галлата. Это позволило сделать вывод, что пассивация галлиевого электрода определяется образованием на поверхности галлия более электроположительного соединения, чем ОзаОз. Можно предноложить, что при этих потенциалах происходит восстановление сверхстехиометрического кислорода, находящегося в окисле галлия. Появление максимумов на кривых активации пассивного галлия, возможно, связано с образованием поверхностного окисла, восстанавливающегося с высоким перенапряжением. Увеличение плотности. тока катодной активации приводит к сдвигу потенциалов в максимуме и потенциалов площадок в отрицательную сторону. Количество избыточного кислорода в пассивирующей [c.92]

    При анодном образовании питтинга следует различать три стадии пробой пассивной пленки первичный рост питтинга, где скорость роста определяется перенапряжением анодного процесса, а диффузионное тормон<ение не имеет существенного значения последующий рост питтинга, когда скорость растворения определяется диффузионными процессами. [c.25]

    При легироваиии стали рением сильно снижается перенапряжение выделения водорода, и коррозионная стойкость возрастает за счет смещения потенциала стали в положительную сторону, в область пассивных значений. Рений является эффективной катодной добавкой, аналогичной палладию или платине которые при введении их в хромистые (Х25Т) и хромоникелевые стали в количестве 0,1— 0,5% значительно повышают коррозионную стойкость сталей в растворах серной и муравьиной кислот [49, с. 5] см. гл. IV. [c.205]

    Рассматривая причины межкристаллитной коррозии алюминия высокой чистоты при температурах выше 160 °С, можно предположить следующее. Границы зерен содержат даже в очень чистом алюминии больше различных примесей, чем центр зерна. В межкристаллитных переходных зонах вследствие межкристаллитной адсорбции возрастает содержание легирующих элементов, что и обусловливает изменение потенциала этих участков металла [161]. Скорость катодного процесса на лих примесях возрастает, что приводит к облагораживанию потенциала участков зерна, прилегающих к границе. Поскольку пр11 высоких температурах чистый алюминий при стационарном потенциале корродирует в активной области, смещение потенциала в положительную сторону приводит к ускоренному рас-гв орению пограничных участков зерен. Так, при коррозии алю- миния чистоты 99,99% в воде при 100 °С границы зерен являются катодами. Гидроксил-ион, образующийся при протекании катодной реакции, разрушает защитную окисную пленку, что ведет к развитию межкристаллитной коррозии. Подкисление среды препятствует накоплению гидроксил-ионов на локальных катодах. В св язи с этим в 0,01-н. растворе соляной кислоты при 100 °С межкристаллитная коррозия алюминия высокой чистоты л енее интенсивна, чем в кипящей дистиллированной воде [162]. Значительное смещение потенциала в положительную сторону вследствие анодной поляризации или легирование элементами с. малым перенапряжением водорода до значений потенциала, отвечающих пассивной области, должно предотвратить развитие меж кристаллптной коррозии, что и наблюдается на опыте. [c.86]


Смотреть страницы где упоминается термин Значение перенапряжения Пассивность: [c.116]    [c.190]    [c.82]    [c.23]    [c.204]    [c.109]    [c.181]    [c.480]    [c.47]    [c.13]    [c.228]    [c.340]    [c.39]    [c.64]   
Смотреть главы в:

Физическая химия Том 2 -> Значение перенапряжения Пассивность




ПОИСК





Смотрите так же термины и статьи:

Пассивность

Перенапряжение



© 2025 chem21.info Реклама на сайте