Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам реакция

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Металлоксидные электроды представляют собой своеобразные водородные электроды, так как ан <2он+=- в и аон =- в/ан+. Для электрода используют сурьму, висмут, вольфрам, молибден, серебро, ртуть, свинец и другие металлы, покрытые пленкой своего окисла (или гидроокиси), который трудно растворяется в исследуемом растворе. Наиболее изучены и чаще всего применяются сурьмяный и висмутовый электроды. Сурьмяный электрод характеризуется равновесной электродной реакцией [c.161]

    Реакция определения никеля (И) диметилглиоксимом (ОНг) в щелочной среде в присутствии окислителей получила большое распространение. В результате реакции образуется соединение, растворы которого окрашены в бурый цвет (отношение N1 [)Нг = = 1 3). Максимальное поглощение наблюдается при >, = 470 нм-, значение е= 13 000. В качестве окислителя используют раствор иода. Никель может быть определен указанной реакцией в сталях в присутствии ванадия, молибдена. Вольфрам, хром и титан могут присутствовать до 18%. Мешают медь, кобальт и все элементы, ионы которых дают осадки гидроокисей в щелочной среде. Это первый недостаток метода, второй — малая чувствительность. [c.493]

    При нормальной температуре некоторые металлы энергично взаимодействуют со фтором. При повышенных температурах большая часть стойких в среде кислорода металлов (платина, вольфрам. титан, хром) окисляется фт6 )ом. часто с образованием летучих про дуктов реакции. Эти металлы не могут применяться в качестве конструкционных материалов. [c.852]

    Экспериментально установлено, что кажущаяся константа скорости этой реакции на гетерогенном катализаторе уменьшается по мере увеличения парциального давления водорода. При этом логарифм константы скорости находится в линейной зависимости от парциального давления водорода (рис. 3.1). (Исследования проводились на вольфрам-сульфидном катализаторе). [c.70]

    Из побочных реакций, которые могут протекать в графитовой печи, главной является образование карбидов, что значительно ухудшает предел обнаружения таких элементов, как ниобий, тантал, вольфрам, бор, уран. Различные элементы в порядке убывания их летучести в графитовой печи можно представить в виде ряда  [c.152]

    В шестой группе — молибден, вольфрам и теллур. Оксид хрома (III) можно восстанавливать водородом, но константа реакции восстановления имеет очень небольшое значение, поэтому хром практически этим методом не получают, так как для образования даже незначительных количеств металла необходимо большое количество совершенно сухого водорода. [c.12]

    Механизм реакции. При анализе продуктов гидрогенолиза сераорганических соединений было обнаружено присутствие небольших количеств меркаптанов. В связи с этим изучение механизма реакции гидрогенолиза сернистых соединений в жидкой фазе над сульфидным вольфрам-никелевым катализатором приобрело самостоятельный интерес. [c.402]


    В качестве пар электродов успешно могут быть использованы, особенно при ред-окс реакциях, платина — графит, платина — вольфрам, платина — родий, платина — палладий и др. [c.50]

    Деструктивная гидрогенизация. Процесс заключается в крекинге твердого и жидкого сырья под давлением 300—700 ат. Высокое парциальное давление водорода в зоне реакции позволяет подвергать крекингу такие тяжелые виды сырья, как уголь, сланцы, тяжелую смолу полукоксования углей и нефтяные остатки типа гудрона. Температура процесса 420—500 С. Катализаторы содержат железо, вольфрам, молибден, никель. Целевым продуктом является обычно бензин, но можно отбирать и более тяжелые дистилляты (типа дизельного и котельного топлив). [c.11]

    По своему химическому поведению молибден и вольфрам гораздо сильнее отличаются от хрома, чем между собой. Например, в отличие от хрома степень окисления -f 3 для молибдена и вольфрама реализуется лишь в небольшом числе катионных комплексов. Реакции хрома(П1) во многом сходны с реакциями железа (П1) и алюминия. В степени окисления -f6 хром несколько напоминает ванадий (4-5). [c.618]

    H. Как относятся молибден и вольфрам к воде, кислороду, кислотам и щелочам Написать соответствующие уравнения реакций. [c.247]

    Реакция синтеза аммиака катализируется металлами, имеющими не полностью застроенные d- и /- электронные уровни. К ним относятся железо, родий, вольфрам, рений, осмий, платина, уран и некоторые другие металлы. В промышленности используются контактные массы на основе железа, например, катализатор ГИАП состава  [c.198]

    На практике в качестве промежуточных соединений в рассматриваемом галогенидном методе используют летучие галоге-ниды, под которыми условно подразумевают галогениды, имеющие давление насыщенного пара при 500 К более 10 Па, и для которых разработаны достаточно эффективные методы очистки. Из рассмотрения свойств галогенидов элементов периодической системы следует, что возможности галогенидного метода достаточно высоки (рис. 1). Действительно, как видно из рис. 1, летучие галогениды имеют более чем 20 элементов, в то время как галогенидный метод используется для глубокой очистки лишь некоторых из них (бор, галлий, олово, мышьяк, сурьма, висмут, молибден, вольфрам). Расширению возможностей галогенидного метода может способствовать и более широкое использование реакций термораспада летучих галогенидов (иодидов). Однако следует иметь в виду, что при повышенных температурах, обычно характерных для процесса термораспада, возрастает веро- [c.12]

    Вольфрам-никелевый катализатор на окиси алюминия, несмотря на несколько более высокую температуру реакции по сравнению с ШЗг-катализатором, обладает значительно меньшей расщепляющей активностью прн той же степени рафинирования и гидрирования. Эти особенности данного катализатора проявляются также при гидрировании смолы бурого угля и различных фракций смазочных масел. [c.290]

    В каких средах и почему молибден и вольфрам проявляют коррозионную устойчивость В каких условиях они коррозионно нестойки Напишите реакцию растворения молибдена в царской водке. Назовите области применения молибдена, вольфрама и их соединений. [c.349]

    Каталитической активностью в отношении таких реакций обладают переходные металлы (с незаполненными d— или f — оболе чками) первой подгруппы (Си, Ад) и восьмой группы (Fe, Ni, Со, Pt, Pd) периодической системы Д.И. Менделеева, их окислы и сульфиды, их смеси (молибдаты никеля, кобальта, ванадаты, вольфрам аты, хроматы), а также карбонилы металлов и др. [c.81]

    Проводят следующую серию опытов. Нагревают вольфрам в токе кислорода до полного завершения реакции (постоянство массы продукта реакции). Продукт реакции (ярко-желтый порошок) делят на две части. Одну часть сплавляют с твердым гидроксидом натрия, а затем прокаливают с некоторым количеством натрия в инертной атмосфере. При этом образуется ярко окрашенное вещество с сильным блеском. Вторую часть желтого порошка (от первой реакции) переводят в раствор, обрабатывая раствором щелочи, затем раствор подкисляют до pH 3—4. Выпадают белые кристаллы соединения с отношением Ыа " , равным 10 12. Эти кристаллы вновь обрабатывают раствором щелочи до перехода их в раствор, к которому затем добавляют гидрофосфат натрия до pH 9—10. Выпадает осадок соединения, в котором соотношение Р равно 1 12. [c.167]

    Галиды -металлов VI группы образуются при непосредственном взаимодействии, а также в результате обменных реакций и при растворении металлов в кислотах. Галиды высшей степени окисления (+6) для хрома не характерны и очень неустойчивы (СгР ). Молибден и вольфрам образуют фториды и хлориды с ковалентно-полярной связью. Шесть валентных орбиталей гибридизируются и молекула получает симметрию октаэдра (рис. 178). Галиды молибдена и вольфрама в высшей степени окисления егко-летучие вещества, которые не могут пассировать поверхность металла. Поэтому [c.344]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]


    Так из газовой фазы получают очень чистый вольфрам. Получают также по реакции [c.338]

    Как получить молибден из МоЗг и вольфрам из Реи 04 Написать уравнения соответствующих реакций. [c.261]

    Циклопропан (I), 0. Вольфрам Реакции с уч Изотопный сб. Дейтероциклопро-паны dj—dj [дейтеро-пропаны, дейтероэтаны, дейтеромета-ны] металлический астием водорода иен и гидрирование W (напыленная пленка) Р]= 10 торр, Рц = = 100 торр, 27° С, 40 мин, степень обмена водорода в I — 50%. Доля раскрытия цикла и разложения растет со временем [811] [c.535]

    Хром получают алюмотермически из его оксида Сг Оз, а вольфрам — восстановлением WO3 водородом. Составьте уравнения соответствующих реакций. [c.411]

    После разрушения карбидов. может оставаться желтый осадок H2WO4 или белый осадок HjSiOs. Его отфильтровывают и при наличии желтой окраски испытывают на вольфрам реакцией с Zn и НС1 (стр. 208) .  [c.243]

    Молибден, вольфрам и их оксиды являются п-полупроводниками ( <ак и N1, Со, Р1 и Р(1). Их каталитическая активность по отношению к реакциям окисления —восстарювления обусловливается наличием на их поверхности свободных электронов, способствующих адсор — бции, хемосорбции, гомолитическому распаду органических молекул. Однако Мо и Ш значительно уступают по дегидро-гидрирующей активности N1, Со и особенно Р1 и Рс1. [c.208]

    Для катализаторов типа никель-вольфрам и ннкель-мо. [ибден определены оптимальные отношения компонентой 100 Ni/5W и 100 Ni/15Mo [144]. Катализаторы с такими оптимальными соотношениями компонентов показали наибольшую плотность, а рентгенограммы никель-молибденовых катализаторов обнарун ивают параллелизм между их активностью в реакции гидрогенизации и количеством никеля в твердом растворе [128, 131]. [c.265]

    В процессах гидроочистки нефтепродуктов используются сероустойчивые гидрирующие катализаторы, содержащие молибден в качестве основного гидрирующего компонента, и кобальт или никель в качестве промоторов. Используются также катализаторы, содержащие вольфрам и никель. В России выпускаются и эксплуатируются несколько типов катализаторов гидроочистки АКМ, АНМ, АНКМ, марок ГО, ГК, ГКД.и КГМ. Они различаются, в основном, содержанием активных компонентов, что влияет как на степень обессеривания, так и на глубину гидрирования ароматических. Так, на катализаторе АКМ разрыв С-С связей и гидрирование ароматических практически не происходит, а активность в реакциях насыщения непредельных, разрыва связей С-Ы, С-0 и С-3 находится на достаточно высоком уровне. [c.83]

    Maiiet test for tungsten реакция Малле на вольфрам при добавлении к содержащему вольфрам раствору концентрированной H I до растворения образующегося осадка, а затем металлического цинка появляется красная окраска при замене цинка тиоцианатом натрия появляется зе- [c.392]

    Следовательно, график зависимости у от ( представляет собой прямую линию (рис. 10.2). Это уравнение справедливо, когда скорость реакции на поверхности раздела постоянна, например, когда среда проникает к поверхности металла через трещины и поры в оксидной пленке. Для таких металлов обычно уИрм//гтро < 1. В особых случаях, когда скорость лимитирующей реакции постоянна как на внутренней, так и на внешней фазовой границе пленки продуктов коррозии, линейное уравнение может быть справедливо и при MpJnmpoк > 1- Например, вольфрам, окисляясь при 700—1000°С согласно параболическому уравнению, образует внешний пористый слой WOз и внутренний плотный слой неизвестного состава [10]. Когда скорости образо- [c.192]

    Этим требованиям полнее всего соответствуют металлы, окислы и сульфиды элементов VI и VI11 групп Периодической системы элементов (никель, кобальт, железо, молибден, вольфрам, хром). Состав катализаторов оказывает существенное влияние на избирательность реакций, поэтому соответствующим подбором компонентов катализаторов и их соотнощений удается осуществлять управление процессом гидроочистки моторных топлив в широких пределах. [c.201]

    Составьте уравнения реакции, с помощью которых можно получить вольфрам из FeW04 то же, для получения молибдена из M0S2. [c.247]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Металлы элементов У1Б группы тугоплавки, характеризуются пониженной химической активностью. По ряду Сг—Мо—химическая активность падает. С водородом эти металлы не взаимодействуют. Важнейшими производными хрома являются производные Сг (III) и Сг (VI), а молибдена и вольфрама — в степени окисления +6. Производные хрома (VI) — в кислой среде сильные окислители. Хроматы и особенно молибдаты и вольфраматы вступают в реакцию конденсации с образованием изополиоксо-соединений состава ЫагСгзОю, Ма2 зОю и т. п. Для Мо (VI) и Ш (VI) весьма характерно образование гетерополиоксоанионов. Для Сг и Мо очень характерно образование пероксосоединений. Соединения хрома (III) по химическим свойствам похожи на производные алюминия. Хром, молибден, вольфрам — важнейшие материалы современной техники. [c.531]

    В настоящее время основными потребителями молибдена и вольфрама являются электровакуумная, электротехническая и химическая промышленность. Молибден используют в качестве нагревателей высокотемпературных (до 1500 "С) печей сопротивления, работающих в восстановительной (водород) атмосфере, а также для теплозащитных экранов вакуумных печей и в испарительных установках. Высокая тугоплавкость и малая летучесть вольфрама дают возможность применить его для изготовления нитей ламп накаливания, катодов радиоламп и рентгеновских трубок. Долговечность ламп накаливания и нх излучательную способность удается значительно повысить путем введения в баллон лампы небольших количеств иода. Эффект при этом достигается за счет протекания обратимой реакции причем иод, реагируя с испарившимся вольфрамом на относительно холодной внутренней поверхности баллона, образует летучий который разлагается на раскаленной нити, регенерируя испарившийся вольфрам. В связи с этим удается существенно повысить температуру нити, а следовательно, ее светимость и одновременно увеличть ресурс лампы. [c.349]

    Общая характеристика элементов подгруппы марганца. Электронная конфигурация их п — l)d ns Высшее окислительное число г 7. Для марганца и рения характерны соединения, где степень их окисления +2, -f3, +4, - 6 и +7 (-[-1 и +5 мало характерны). Технеций больше похож на рений, чем на марганец. Соединения рения (VII) наиболее устойчивы (отличие от марганца). Технеций получен из молибдена в небольшом количестве в процессе ядерных реакций (1937г.) и мало изучен. Рений получен в 1924 г. и изучен довольно хорошо. Он похож на вольфрам и платиновые металлы, соседние с ним. Пассивен в обычных условиях. Устойчив в своих высших соединениях. [c.340]

    Ha правом электроде происходит обратная реакция, образующийся Na20 растворяется в расплавленном вольфра-мате натрия  [c.240]


Смотреть страницы где упоминается термин Вольфрам реакция: [c.550]    [c.20]    [c.398]    [c.401]    [c.139]    [c.343]    [c.419]    [c.151]    [c.373]    [c.155]    [c.40]   
Аналитическая химия (1973) -- [ c.296 ]

Методы элементоорганической химии Кн 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам влияние его при реакции аммиака с окисью

Вольфрам и его соединения реакции

Вольфрам реакции иона

Вольфрам реакция с цианистым натрием

Вольфрам соединения его как катализаторы при яри реакции ацетилена

Вольфрам, влияние его на крекинг при реакции спирта с водородом

Вольфрам, пятиокись реакция с Н паром

Вольфрам, соединения его как катализаторы при гидратации ацетилена реакции метана с паром

Вольфрам, трехокись реакция конденсации

Калечиц, Э. Н. Дерягина и В. Г. Липович. Влияние нестехиометрической серы сульфида вольфрама на отдельные реакции процесса деструктивной гидрогенизации гидрирования, гидроизомеризации и изомеризации

Каталитическая активность карбида вольфрама в реакции разложения перекиси водорода в кислых средах

Кислород, адсорбция на вольфраме реакции с азотом

Кислород, десорбция с вольфрам реакция с окисью азот

Кислород, десорбция с вольфрам реакция с окисью углерода

Реакции ионов вольфрама

Реакции с образованием окисных соединений вольфрама и процессы на их поверхности

дихлорпропена вольфрама в реакции обмена хлора



© 2025 chem21.info Реклама на сайте