Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты поглощение в клетках

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    Ультрафиолетовые спектры белков отличаются сильным поглощением, характеристическим для ароматических фрагментов аминокислот, входящих в их состав фенилаланин, тирозин, триптофан. Эти спектры поглощения используют для аналитического определения остатков указанных аминокислот. Резкий максимум поглощения, характерный для нуклеиновых кислот и нуклеопро-теидов, позволяет определить их содержание в отдельных клетках. [c.361]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    Внутриклеточному обмену аминокислот, естественно, должен предшествовать их перенос через клеточную мембрану. Механизмы, обеспечивающие этот процесс, еще не выяснены, хотя и исследован ряд участвующих в нем факторов. Для изучения процесса поглощения аминокислот используются различные экспериментальные модели препараты кишечника, тканевые срезы, эритроциты, свободные клетки опухолей, суспензии бактерий. Один из применяемых для этих целей экспериментальных приемов состоит в инкубировании изолированных клеток в среде, содержащей аминокислоты, и в определении начальной и конечной концентраций аминокислот в растворе и в клетках. Другой способ заключается в определении аминокислоты, появляющейся в растворе, омывающем серозную поверхность петли кишечника, в которую введен раствор аминокислот. [c.164]


    Из имеющихся в настоящее время данных следует, что аминокислоты могут проникать в клетки как путем простой диффузии, так и в результате активного процесса, при помощи которого они концентрируются внутри клеток. Наличие активного переноса подтверждается данными опытов, показавших, что внутриклеточная концентрация аминокислот значительно превышает концентрацию их во внеклеточной жидкости, а также, что L-изомеры аминокислот проникают в клетки значительно быстрее, чем соответствующие им D-изомеры. Перенос определенной аминокислоты в клетки разных типов может осуществляться неодинаковыми механизмами наряду с этим у клеток одного типа механизм поглощения разных аминокислот может быть различным. Явление концентрирования аминокислот играет существенную роль при всасывании аминокислот из пищеварительного канала, при их реабсорбции в почках и при переносе аминокислот из материнской крови в кровь плода [1]. [c.164]

    Поглощение аминокислот бактериальными клетками было исследовано у целого ряда видов. Механизм этого процесса у бактерий существенно отличается от механизма его в клетках млекопитающих резкие различия наблюдаются также между отдельными видами микроорганизмов. Исследование поглощения аминокислот бактериями осложняется наличием одновременно [c.169]

    Большинство риккетсий никогда не удавалось выращивать вне живой клетки, но их можно размножать в инкубируемых яйцах и в тканях животных из желточного мешка куриного яйца можно получить 10 клеток. В изолированных клетках риккетсий можно выявить некоторые ферменты промежуточного обмена. В ходе культивирования интенсивность метаболизма таких клеток ослабевает, но добавление АТР, органических кислот и аминокислот вновь стимулирует их дыхание. Риккетсии, таким образом, обладают собственным обменом веществ однако они, вероятно вследствие изменения проницаемости клеточной поверхности, не способны регулировать поглощение и выведение метаболитов. [c.123]

    Как известно, белки, углеводы и жиры вне организма расщепляются на свои составные части (гидролизуются) лишь при длительном кипя-чей-1и их с крепкими растворами минеральных кислот или щелочей. При этом белки постепенно распадаются иа отдельные аминокислоты, сложные углеводы — на простые сахара, жиры — на высшие жирные кислоты и глицерин. Между тем в пищеварительном канале человека и животных эти же гидролитические процессы протекают с достаточной скоростью при температуре всего лишь около 37° и при умеренно кислой (в желудке) или слабо щелочной (в кишечнике) реакции. Такое гидролизующее действие пищеварительных соков объясняется содержанием в них особых ферментов (пепсина, трипсина, липазы и др.). Не только пищеварение, но и использование питательных веществ клетками, освобождение химической энергии высокомолекулярных соединений, поглощение кислорода тканями, образование СО2 и другие процессы в тканях и клетках совершаются также при участии ферментов. [c.107]

    Тот факт, что все бактерии, включая и строгих анаэробов, поддерживают на своей плазматической мембране протонодвижущую силу, свидетельствует о важной роли электрохимического протонного градиента в транспорте веществ через мембрану против градиентов их концентрации. Напримф, ионы Ка вьшосятся из бактериальной клетки по механизму Ка -Н -антипорта, заменяющему здесь Ка -К -АТРазу эукариотических клеток. Поглощение питательных веществ осуществляется у бактерий по механизму Н -симпорта необходимые метаболиты пост5 пают в клетку вместе с одним или несколькими протонами при участии специальных белков-переносчиков. Таким способом в клетку транспортируются многие сахара и больщинство аминокислот (рис. 9-36). Некоторые бактериальные транспортные белки используют для активного пфеноса веществ другие источники энергии, например гидролиз АТР или направленный внутрь клетки симпорт с Ка, но подобные примеры относительно редки. В отличие от этого в животных клетках транспорт через плазматическую мембрану внутрь клетки в основном осуществляется за счет энергии градиента ионов Ка , создаваемого Ка -К -АТРазой (разд. 6.4.10). [c.34]

    Островки Лангерганса Инсулин (бета-клетки) Снижение уровня глюкозы в крови усиление поглощения и утилизации глюкозы и аминокислот клетками Уровни глюкозы и аминокислот в крови [c.335]

    Этим и объясняется, например, что поступление в клетку Р останавливается при прибавлении флоризина, который ингибирует образование эфиров глюкозы. Поглощение аминокислот может быть подавлено пенициллином. [c.481]

    Одной из главных причин разной биохимической активности стереоизомеров лекарственных препаратов являются различия в их способности к поглощению внутренними средами организма. Эти различия связаны в первую очередь с особенностями строения и свойствами биологических мембран, поскольку последние построены из оптически активного, асимметрического материала. Кроме того, в мембранах существуют специальные транспортные системы, осуществляющие перенос биомолекул из внутренней среды клетки во внеклеточное пространство и наоборот. Некоторые транспортные системы имеют высокую стереоселективность по отношению к молекулам того или иного класса. Например, работа подобной транспортной системы обеспечивает увеличение примерно в 500 раз концентрации Ь-аминокислот внутри клеток по сравнению с внеклеточной средой. О-Аминокислоты такими системами не транспортируются. Например, Ь-сарколизин активен при лечении некоторых видов опухолей, а В-форма сарколизина неактивна, поскольку левовращающий изомер сарколизина проникает через мембраны с помощью систем активного транспорта Ь-аминокислот в отличие от правовращающего В-сарколизина  [c.508]


    При интерпретации данных, относящихся к процессу переноса аминокислот, больщое значение приобретает вопрос о состоянии аминокислот внутри клетки. Вполне очевидно, что поглощение той или иной аминокислоты клеткой может зависеть от концентрации аминокислоты в окружающей жидкости, от активности системы, переносящей аминокислоту в клетку, и от превращений, которым аминокислота подвергается в реакциях клеточного обмена. Различными способами удается извлечь из клеток свободные аминокислоты однако не исключено, что в неповрежденных клетках они находятся в связанной форме. Соответствующие связи могут быть сравнительно нестойкими и способными распадаться даже при мягких условиях экстракции. Между тем данные исследований Кристенсена [32—34] и Гайнца [35] указывают на то, что легко экстрагируемые из клеток аминокислоты существуют в клетках в виде свободных аминокислот. Для удержания глицина в тех высоких концентрациях, в которых он поглощается клетками асцитной опухоли, потребовались бы столь же высокие концентрации связывающего агента данных, указывающих на наличие подобного агента, до сих пор не получено. Наблюдения, показавшие, что вместе с аминокислотами в клетки поступает вода, также говорят в пользу присутствия в клетках свободных аминокислот. В опытах со свободными раковыми клетками наблюдалась прямая зависимость между градиентом концентрации глицина и увеличением содержания воды в клетках (осмотический эффект). Гайнц [35] в опытах на клетках асцитной опухоли исследовал кинетику поступления и выхода глицина в процессе переноса и нашел, что зависимость между скоростью притока глицина в клетки и концентрацией глицина в среде можно описать уравнением Михаэлиса — Ментена. Скорость поступления глицина не снижается и даже возрастает при предварительном насыщении клеток глицином. Автор приходит к выводу, что фактором, ограничивающим скорость поглощения глицина, служит связывание глицина с каким-то компонентом клеточной стенки. Полученные им результаты согласуются с представлением о наличии глицина в клетках в свободном состоянии и указывают на то, что выход глицина происходит главным образом путем диффузии. [c.168]

    Это простые окислительные системы, представленные ФМН- и ФАД-содержащими ферментами, а также металлопротеинами. Они более широко распространены в растительных клетках, чем в клетках животных и человека. В клетке около 80% этих ферментов сосредоточено в пероксисомах. Кроме того, они встречаются в мембранах, граничащих с цитозолем. Так происходит окисление альдегидов, аминов, I- и 1)-аминокислот, пуринов. Некоторые из названных веществ являются токсическими. В лейкоцитах, гистиоцитах и других клетках, способных к фагоцитозу, пероксидазный путь окисления субстратов очень активен. Образующаяся Н2О2 используется для обезвреживания болезнетворных бактерий и распада инфекционного материала, поглощенного клетками. Однако избыточное накопление перекиси водорода токсично, особенно для нефагоцитирующих [c.130]

    Мы уже кратко упоминали о системах активного транспорта, используемых бактериями при поглощении аминокислот (гл. 5, разд. Б, 2). Другая интересная система активного транспорта, у-глутамильный цикл [27], функционирует в клетках млекопитающих. В основе этого цикла лежит использование у-карбоксильной группы глутамата, т. е. того карбоксила, с которым в глутамине связан аммиак. В процессе транспорта [c.93]

    Б. выполняет ф-цию светозависимого протонного насоса. Поглощение кванта света ретиналем приводит к быстрым структурным изменениям в молекуле. Конечный результат-перенос протона из цитоплазмы в окружающую среду, после чего молекула Б. возвращается в исходное состояние. Электрохим. потенциад обусловленный возникшим протонным градиентом и трансмембранным электрич. потенциалом, используется клеткой для синтеза АТФ, а также транспорта аминокислот и метаболитов, движения жгутиков и др. Б. применяют для изучения мехаиизма транспорта протонов в живых организмах. Он перспективен как фо-тохромное вещество в галографии и вычислительной технике. [c.238]

    При увеличении концентрации полиэлектролита I (К = С2Нд-, X = I), добавляемого к взвеси микробных клеток, заметно возрастает интенсивность выхода компонентов цитоплазмы [И], что фиксируется по увеличению поглощения при 260 нм надосадочной жидкости, отделенной от клеток. Для оценки интенсивности связывания поликатионов клетками стафилококка использовали гидрохлорид поливинил амина, в который специально была введена флуоресцентная метка. Наличие в полимере метки, поглощающей в области 490 нм, позволило проследить связывание его клетками при концентрациях более низких, чем бактерицидные, и определить полимер в области спектра, где компоненты, выходящие из клетки (аминокислоты, белки, нуклеотиды и др.) не поглощают. Связывание полимера с микробными клетками происходит сразу же после смешения клеточной взвеси с полимером. Следует отметить быстрое (за 10-15 мин) насыщение поверхности клетки полимером, после чего оно прекращается. Выход из клетки компонентов цитоплазмы стафилококка начинается сразу же в ходе сорбции полимера клетками (рис. 1). [c.165]

    Фосфоглицериновая кислота превращается в фосфоенолпировиноградную кислоту, которая присоединяет углекислоту и воду, в результате чего образуется щавелевоуксусная кислота, а за-тем и другие соединения. Реакция карбоксилирования трехуглеродного соединения по схеме СзЧ-СОг- - С4 встречается не только у фотосинтезирующих растений, но и в тех клетках растений, где фотосинтеза нет, а также в клетках других организмов. В этой реакции карбоксилирования синтез сахаров не происходит, а образуются органические кислоты и аминокислоты. При фотосинтезе основная часть СОг (по крайней мере 70—85% поглощенного углерода) включается через фото-синтетический цикл путем присоединения к рибулезо-1,5-дифос- [c.134]

    Кристенсен и его сотрудники [34, 38—42, 696—698] исследовали накопление целого ряда аминокислот клетками мышиной карциномы. Было обнаружено, что в клетках мышиной карциномы концентрируются как L-, так и D-изомеры аминокислот, причем L-изомеры — более активно. Как правило, с удлинением боковой цепи перенос аминокислот затрудняется аминокислоты, обладающие электроноакцепторными заместителями (например, орнитин, метионин, оксипролин), концентрируются клетками более активно. Присутствие метильной группы в а-положении повышает интенсивность накопления, тогда как наличие в молекуле второй карбоксильной группы обычно ее снижает. Диаминокислоты, например орнитин, лизин, а, -диампномасляная кислота и а,3-диаминопроиионовая кислота, концентрируются в клетках легче, чем соответствующие моноаминокислоты. Полученные данные согласуются с иредставлением, по которому реакции переноса протекают значительно легче, если аминогруппа находится в незаряженной форме, т. е. в той форме, которая легко реагирует с образованием ацильных производных или шиффовых оснований. Кристенсен выдвигает предположение о возможности образования шиффовых оснований как промежуточного этапа в механизме переноса аминокислот. Из участия а-метиламинокислот в таких реакциях можно заключить, что наличие а-водородного атома несущественно для переноса возможно, что отсутствие а-водородного атома повышает стабильность промежуточного шиффова основания. Быстрое поглощение диаминокислот также свидетельствует в пользу того, что они вступают с пиридоксалем в стабильные промел<уточные комплексы типа шиффовых оснований [34], Было также найдено, что отсутствие свободной карбоксильной группы или ацилирование аминогруппы снижает или полностью подавляет накопление данной аминокислоты клетками. [c.169]

    Наряду с этим имеются противоположные данные, согласно которым Е. соИ и некоторые другие микроорганизмы способны накапливать аминокислоты против градиента концентрации. Так, например, Гейл и Родуэлл [44] обнаружили, что клетки Strepto o us fae alis, суспендированные в растворах лизина, накапливают лизин в этих условиях концентрация лизина внутри клеток достигает значительно более высокого уровня, чем в окружающей жидкости. Эти рез льтаты как будто свидетельствовали о наличии процесса активного поглощения лизина клетками. Однако было найдено, что при определенных экспериментальных условиях лизин может свободно проникать в клетки Sir. fae alis и выходить из них [45, 46]. Авторы пришли к выводу, что наблюдаемые явления можно объяснить на основе известных физических закономерностей, которым подчиняется распределение вещества по обе стороны полупроницаемой мембраны. [c.170]

    Возможно, что у Е. all происходит какой-то процесс фиксации накапливаемых аминокислот, предшествующий их включению в белки [47]. При инкубировании . со//в среде, содержащей С -валин, концентрация валина в клетках достигала величин, в 1000 раз превышающих концентрацию его в среде. Поглощенный валин удавалось конкурентно вытеснить лейцином или изолейцином. Процесс поглощения был специфичен для L-ва-лина и протекал значительно быстрее, чем включение этой [c.170]

    Таким образом, катионы почвенного раствора МН4 , К, Mg" и другие поглощаются в обмен на катионы Н , Са" и т. д., а анионы — в обмен на НСО3 и другие анионы поверхности корней. Как только поглощенные соли войдут в соприкосновение с жизнедеятельной и непрерывно движущейся протоплазмой корневых волосков, они или вступают в непрочные соединения с белками плазмы, или ассимилируются ими и вместе с плазмой передвинутся до конца корневого волоска, откуда передадутся протоплазме, прилегающе к корневому волоску клетки, от этой клетки — следующей и т. д., до тех пор, пока соли или продукты их ассимиляции не попадут в проводящие сосуды древесины, по которым они довольно быстро достигнут ассимилирующих листьев. В листьях окончательно ассимилируются поступающие соли, то есть соединяются с соответствующими продуктами фотосинтеза и дыхания. Таким же путем поступает и передвигается в листья углекислота и ее соли, всегда содержащиеся в почвенном растворе. Следовательно, превращение и частичная ассимиляция минеральных веществ происходит и до поступления их в листья, во всех живых клетках корней и стеблей. Так, большая часть нитратов восстанавливается до аммонийных соединений уже в корневой системе здесь же большая часть восстановленного азота может вступить в состав амидов аминокислот — асиарагпна (моноамид аспарагиновой кислоты) и глютамина (моноамид глютаминовой кислоты) и белков. В живых клетках корней и стеблей могут превращаться и частично ассимилироваться также фосфаты, сульфаты, углекислота и ее соли и другие минеральные вещества. [c.32]

    Через некиторое время происходит полное поглощение всего имевшегося кислорода, нормальное дыхание растительных клеток переходит в анаэробное, по мере возрастания концентрации СО. клетки отмирают. Максимальная концентрация Ш. в атмосфере силоса достигает 70—90%. По мере отмирания клеток в силосе начинаются процессы автолиза. Распад белков идет в некоторых с. уучаях до пептонов, в других (в значителыюй части)—до аминокислот. [c.435]

    Основную роль в генерации и поддержании мембранного потенциала играет фермент Ма -К -АТФ-аза, которая за счет энергии АТФ выкачивает Ма из клетки, а К+ закачивает в клетку против их градиента концентрации (см. главу 5). Наличие градиента концентрации Ма" и играет важную роль в электровозбудимости клеточных мембран и транспорте глюкозы, аминокислот и других веществ. Плазматические мембраны участвуют в процессах секреции и поглощении больших молекул, а также в межклеточных взаимодействиях, распознавании внешних сигналов. [c.33]

    С помощью описанного выше теста на треониндегид-ратазу измеряют удельную активность фермента в клетках, выращенных в течение ночи в трех описанных выше средах. В культуре 2 должна выявляться более низкая ферментативная активность, чем в культуре L Культура 3 будет подвергаться дерепрессии относительно культуры 2 из-за постепенного снижения внутриклеточной концентрации L-изолейцина (содержание L-изолейцина в культуре 3 понижено с самого начала, и, кроме того, его поглощение ингибируется двумя другими аминокислотами).  [c.417]

    Таким образом, общий круговорот азота в природе представляет собой обратимый переход его свободной газообразной формы в атмосфере в фиксированную форму в почве или биологической системе. В растительных клетках поглощенные нитраты вновь восстанавливаются до аммиака, который затем связывается с определенными органическими кислотами, в результате чего образуются аминокислоты, а затем белки. Эти вещества перевариваются животными и превращаются в животные белки и азотистые продукты обмена — мочевину и мочевую кислоту. В конечном счете все животные и растения отмирают и разла- [c.220]

    НЫМИ веществами к потребляющим клеткам в растущем корневом апексе и к зонам запасания питательных веществ. Вновь поглощенные ионы свободно перемещаются по растению. Однако использование этих ионов в клетке может быть связано с их включением в какую-нибудь структурную молекулу. Формирующиеся ткани требуют непрерывного снабжения всеми основными минеральными ионами. Бели все они поступают из почвы, то растение не испытывает никаких трудностей. Однако когда какого-либо минерального иона ехватает, его иногда можно получить при распаде сформировавшихся ранее молекул в старых клетках. Так, Ы, образующийся при расщеплении аминокислот, и Мд2+, возникающий при распаде хлорофилла, передвигаются из более старых частей растения в молодые растущие клетки. Такое перемещение подвижных питательных элементов осуществляется, вероятно, по флоэме. Удаление этих элементов из более старых клеток ускоряет старение и вызывает появление симптомов минеральной недостаточности в более старых частях растения. [c.236]

    Функции плазмалеммы весьма разнообразны, поскольку они определяются процессами, происходящими как иapyлiи, так и внутри клетки. Все вещества, поступающие в клетку и удаляемые из нее, должны пройти через ц ито п л а з м а т ическу ю мембрану. Через нее идет пассивный транспорт воды, ионов, пизкомо-лекулярных веществ, а также активный перенос этих соединений и многое другое. Поглощение ионов и микромолекул (сахаров, аминокислот) осуществляется в тех случаях, когда их концентрация внутри клетки ниже, чем снаружи. Ультраструктур-ные частицы и макромолекулы (белки, рибонуклеаза) попадают в клетку путем эндоцитоза — процесса, заключающегося в образовании впячиваний плазмалеммы, которые, отшнуровываясь ОТ поверхности клетки, образуют связанные с плазмалеммой пузырьки, проникающие затем в глубь цитоплазмы. [c.30]

    Большинство пурпурных бактерий не могут использовать нитраты в качестве источника азота. Источником азота для них служат аммоний, мочевина или аминокислоты. Многие пурпурные бактерии проявляют способность к азотфиксации. Исключение составляют некоторые виды, имеющие крупные клетки. Способность к азотфиксации у пурпурных бактерий сочетается со способностью к фотовыделению молекулярного водорода. Вероятно, этот процесс происходит при участии нитрогеназы в условиях, когда азотфиксация по каким-то причинам не происходит или масштабы ее ограничены. Помимо нитрогеназы выделение Нг пурпурными бактериями катализируется гидрогеназой, однако ее основная функция, по современным представлениям, заключается в поглощении молекулярного водорода и его последующем активировании, необходимом для использования в качестве донора электронов при фотоассимиляции СОг- [c.260]

    Таким образом, молекулярные основы изменений гликопротеи-дов в клетках RF- EM явно отличаются от изменений гликопротеидов СНО-клеток, в которых меченные Н аминокислоты включались в гликопротеид и таким образом увеличивался его уровень. Какая бы ни была их функция в клетках RF-GEM, высокомолекулярные белки не несут прямой ответственности за нарушение поглощения лекарств устойчивыми клетками. Обработка этих клеток проназой или туникамицином, полностью удаляющих измененный гликопротеид, не приводит к увеличению чувствительности к ВБЛ и поглощения этого препарата клетками (W. Т. Веек, личное сообщение). [c.104]


Смотреть страницы где упоминается термин Аминокислоты поглощение в клетках: [c.170]    [c.348]    [c.326]    [c.252]    [c.56]    [c.549]    [c.109]    [c.330]    [c.40]    [c.203]    [c.477]    [c.459]    [c.162]    [c.221]    [c.40]    [c.197]    [c.108]    [c.223]    [c.80]   
Биохимия аминокислот (1961) -- [ c.165 ]




ПОИСК







© 2025 chem21.info Реклама на сайте