Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тенденция к переходу и химический потенциал

    Успехи химической промышленности за последние два десятилетия совпали с обш ей тенденцией перехода от сырья, получаемого из каменных углей и сельскохозяйственных продуктов, к сырью, обильные ресурсы которого легко и просто можно получать из нефти и природного газа. Большой рост потребления нефти и природного газа в качестве топлив также оказал серьезное влияние на химическую промышленность. В связи с убедительными доказательствами возможности удовлетворить потребность в этих видах топлива благодаря открытию все новых и новых месторождений целесообразность использования сырья нефтяного и газового происхождения в химической промышленности неуклонно возрастает. Кроме того, изменения технологии нефтепереработки позволяют более рационально использовать топливный потенциал нефти, что дает дополнительные ресурсы новых видов сырья для химической промышлеиности. К 1960 г. нефть и природный газ стали основным источником сырья для промышленности органического синтеза. [c.223]


    Широко применяют метод замены растворителя, основанный, как и предыдущий, на таком изменении параметров системы, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и тенденция к переходу в равновесное состояние приводит к образованию новой фазы. В отличие от метода конденсации паров (изменение температуры), в методе замены растворителя изменяют состав среды. Так, если насыщенный молекулярный раствор серы в этиловом спирте влить в большой объем воды, то получающийся спирто-водный раствор окажется уже пересыщенным. Пересыщение приведет к агрегированию молекул серы с образованием частиц новой фазы — дисперсной. При вливании спиртового раствора канифоли в воду образуются золи мастики, широко используемые в практике для пропитки дерева, бумаги и других материалов. [c.24]

    Тенденция к переходу и химический потенциал [c.413]

    Из рис. 32.1 видно, что реакционная способность молекулы, находящейся на поверхности (тенденция к переходу из одной фазы в другую, термодинамическая активность, химический потенциал), должна сильно отличаться от реакционной способности молекулы в объеме вещества. Кроме того, можно прийти к выводу, что для больщинства условий разные молекулы на поверхности будут обладать различной тенденцией к переходу из одной фазы в другую вследствие неровностей на поверхности. То же наблюдается, конечно, и для атомов в молекулах вспомните различие в реакционной способности первичного, вторичного и третичного атомов углерода (т. 2, гл. 24). Рис. 32.1 также поясняет одну из основных трудностей в изучении химии поверх- [c.52]

    Нетрудно заметить, что при уменьшении объемной концентрации, т. е. при Со->0. эта эффективная упругая постоянная переходит в е. Напротив, при увеличении эффективная упругая постоянная уменьшается. В пределе, при со->со, она обращается в нуль. Хотя, конечно, пользоваться этим выражением, полученным при помощи химического потенциала слабого раствора, нельзя еще задолго до достижения больших концентраций, однако оно характеризует общую тенденцию упругой постоянной. [c.623]

    Таким образом, вещество будет иметь тенденцию переходить самопроизвольно из фазы, где опо имеет более высокий химический потенциал, в фазу, где его химический потенциал ниже. Аналогичным образом, вещество будет самопроизвольно диффундировать из области, где его концентрация и химический потенциал выше, в область более разбавленного раствора, где его химический потенциал ниже. В этом отношении химический потенциал подобен другим потенциалам — электрическому, гравитационному и т. п., также определяющим направление самопроизвольного перехода, который всегда идет в Сторону низшего потенциала. Благодаря этому сходству химический потенциал и получил свое название. [c.136]


    Одним из характерных химических свойств хинонов является их склонность к реакциям присоединения . Типичное для хинонов присоединение нуклеофильных агентов к атомам углерода можно рассматривать как присоединение к сопряженной цепи, включающей группу СО и С=С-связи хиноидного ядра. В этом отношении хиноны подобны а,Р-ненасыщенным кетонам и их винилогам. Своеобразие присоединения к хинонам состоит во вторичных превращениях, обусловленных тенденцией к ароматизации. Первоначально образующиеся при нуклеофильной атаке продукты присоединения стабилизируются далее путем отщепления вытесняемой группы в виде аниона (нуклеофильное замещение) или путем прототропного перехода в замещенный гидрохинон. Последний является конечным продуктом реакции, если вступающая группа обладает электроноакцепторными свойствами и повышает окислительно-восстановительный потенциал системы хинон — гидрохинон. В тех случаях, когда заместитель имеет электронодонорный характер, происходит дальнейшее окисление частью исходного хинона, восстанавливающего в гидрохинон. Применение дополнительного окислителя позволяет регенерировать исходное вещество и довести процесс до полного превращения в замещенный хинон. Конечный результат при этом состоит в замене атома водорода в молекуле хинона и часто интерпретируется как нуклеофильное замещение с удалением гидрид-иона, облегчаемое участием окислителя Поскольку механизм, допускающий гид-ридное перемещение, в данном случае не доказан, вопрос о том, рассматривать ли вторичное превращение продукта присоединения в замещенный хинон как перенос электронов с последующим переходом протона или как отщепление гидрид-иона, сопровождающееся его окислением, остается открытым. [c.5]

    Самопроизвольно, т. е. без затраты работы извне, система может переходить только из менее устойчивого состояния в более устойчивое. Из рассмотренного следует, что в химических процессах одновременно действуют две тенденции стремление частиц объединяться за счет прочных связей в более сложные, что уменьшает энтальпию системы, и стремление частиц разъединиться, что увеличивает энтропию. Иными словами, проявляется действие двух прямо противоположных факторов — энтальпийного (АЯ) и энтропийного TAS). Суммарный эффект этих двух противоположных тенденций в процессах, протекающих при постоянных Т и р, отражает изменение энергии Гиббса G (или изобарно-изотермического потенциала)  [c.172]

    Что являе1ся естественной тенденцией переход смеси Л- -В в смеет. С-1-0 или наоборот Па это можно ответить, рассчитав химический потенциал каждой с.меси. Если функция Гиббса смеси А-ЬБ больше, че.м смеси С- -0, то реакция имеет тенденцию нроте- [c.276]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]


    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    Для учебной и научной работы студентов предлагается база данных по физико-химическим свойствам нефтехимических систем различного строения и состава. Многообразие и многочисленность элементного состава информационной базы позволяет исследовать тенденцию изменения свойств при переходе от одного класса веществ к другому. Согласно содержанию массивов существуют корреляционные сферы, внутри которых имеется упорядоченная зависимость одтюго свойства от другого. Наиболее многочисленны корреляционные сферы, образованные л-элект-ронными системами, что объясняется их химической активностью. По областям наложения корреляционных сфер можно судить о свойствах, способных характеризовать широкий класс веществ базы данных, что позволяет использовать их для изучения не только индивидуальных молекул, но и сложных многокомпонентных углеводородных систем. Представителями таких свойств являются потенциал ионизации и сродство к электрону, важнейшие характеристики реакционной способности вещества. [c.169]


Смотреть страницы где упоминается термин Тенденция к переходу и химический потенциал: [c.23]   
Смотреть главы в:

Общая химия  -> Тенденция к переходу и химический потенциал




ПОИСК





Смотрите так же термины и статьи:

Потенциал химическии

Потенциал химический

Химический потенция



© 2025 chem21.info Реклама на сайте