Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы нулевая группа

    Справочники за небольшим исключением рекомендуют достаточно согласованные значения АЯ , гэз. Вышедшие ко времени окончания работы над этой книгой выпуска справочника охватили водород, кислород, элементы нулевой группы, и главных подгрупп УП и VI групп периодической системы, а выпуски справочника еще и элементы главных подгрупп V, IV и III групп периодической системы. Поэтому в качестве основного источника [c.314]


    Свойства некоторых соединений элементов нулевой группы периодической системы........................ . . .  [c.3]

    СВОЙСТВА НЕКОТОРЫХ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ НУЛЕВОЙ ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ [c.262]

    Б практикуме по газовой хроматографии используют различные газы. Есть газы, которые применяют в качестве газов-носителей (водород, воздух, элементы нулевой группы, азот, двуокись углерода и др.), а есть такие, которые служат объектом исследования обычно это углеводороды. Кислород, азот, водород и другие газы хранятся в стальных баллонах различной емкости под давлением. Газы, критическая температура которых лежит выше комнатной, например, двуокись серы, двуокись углерода, хлор, хранятся в баллонах в жидком состоянии при выходе из баллона испаряются. Некоторые газы хранят растворенными в жидкости, например ацетилен в ацетоне. [c.224]

    В практикуме по газовой хроматографии используют различные газы. Одни газы применяют в качестве газов-носителей (водород, воздух, элементы нулевой группы, азот, диоксид углерода и др.), другие служат объектом исследования, обычно это углеводороды. Кислород, азот, водород и другие газы хранятся в стальных баллонах различной емкости под давлением. Газы, критическая температура которых лежит выше комнатной, например диоксид серы, диоксид углерода, хлор, хранятся в баллонах в жидком состоянии  [c.27]

    ЭМАНАЦИЯ (радой) Еш — первое название радиоактивного элемента нулевой группы периодической системы элементов Д. И. Менделеева с п. н. 86. Массовое число наиболее долгоживущего изотопа 222, Т, = 3,825 дня. Название этого изотопа — радон — присвоено всему элементу. При распаде Э. образуются радиоактивные изотопы таллия, свинца, висмута и полония, с которыми связана радиологическая токсичность Э., особенно [c.292]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]


    Некоторые физические характеристики элементов нулевой группы [c.161]

    ГАЛОГЕНЫ И ЭЛЕМЕНТЫ НУЛЕВОЙ ГРУППЫ 1. Общие сведения [c.192]

    Элементы нулевой группы [c.198]

    Элементы нулевой группы, называемые инертными или благородными газами, имеются в земной коре и в атмосфере. Содержание их в воздухе колеблется от 10 (ксенон) до 0,932 объемных долей в процентах (аргон). В земной коре в наименьших количествах содержится радон (4-10 %), значительно больше содержание ксенона (2,9-10 %) и криптона (1,9-10 %) содержание гелия и неона приблизительно одинаково (8,5-10 7о) и, наконец содержание аргона достигает 3,5-10 %. [c.198]

    Элементы кислород, сера, теллур и полоний составляют главную подгруппу VI группы периодической системы Д.М.Менделеева. Валентный слой этих элементов содержит 6 электронов т пр , т.е. на 2 электрона меньше, чем у соответствующих элементов нулевой группы. [c.76]

    Благородные газы (элементы нулевой группы) [c.315]

    Другие элементы нулевой группы —неон, аргон, криптон, ксенон и радон —в химическом отношении также инертны. Слабо проявляющаяся тенденция этих элементов образовывать химические соединения обусловлена большой устойчивостью их электронных структур. Такие исключительно устойчивые электронные структуры образуются в тех случаях, когда число электронов вокруг ядра равно 2, 10, 18, 36, 54 и 86. [c.106]

    К легким газам в хроматографии относят Нг, N2, Оа, элементы нулевой группы периодической таблицы, а также СН<, СО и СОа- [c.100]

    Благородные газы (образующие нулевую группу) в отличие от остальных неметаллов существуют в элементарном состоянии в виде индивидуальных атомов. Поэтому атомные радиусы элементов нулевой группы нельзя сопоставлять с радиусами других неметаллических элементов. Установлено, что ковалентный радиус ксенона в ХеР равен 1,30А. Вероятные ковалентные радиусы других благородных газов могут быть получены экстраполяцией этого значения для ксенона в предположении, что они изменяются в пределах этой группы аналогично тому, как это имеет место для неметаллических элементов других групп. Полученные таким образом значения ковалентных (а не атомных ) радиусов благородных газов приведены на рис. 6.6, что позволяет сопоставить их с радиусами других неметаллов. [c.98]

    Начнем с рассмотрения благородных газов (элементов нулевой группы). Эти элементы наиболее устойчивы по отношению к химическим реакциям. Атомы благородных газов обладают особым электронным строением у них те энерге- [c.110]

    В периодической системе элементов наблюдается увеличение сродства к электрону и электроотрицательности при переходе слева направо вдоль каждого из периодов, что соответствует возрастанию заряда ядра элементов и, следовательно, числа их валентных электронов, а также уменьшению размеров атомов. Сродство к электрону и электроотрицательность достигают максимальных значений у галогенов — элементов седьмой группы, а затем резко убывают до нуля при переходе к благородным газам — элементам нулевой группы. Другая закономерность изменения сродства к электрону и электроотрицательности заключается в том, что они увеличиваются при переходе снизу вверх вдоль каждой группы периодической системы, что соответствует уменьшению атомного радиуса элементов. В связи с этим следует ожидать, что наибольшей способностью к восстановлению должен характеризоваться фтор. Способность к восстановлению [c.323]

    Сродство к электрону. Когда электрически нейтральный атом присоединяет электрон, то может происходить как выделение, так и поглощение энергии. Обычно процесс присоединения одного электрона с образованием однозарядного отрицательного иона протекает с выделением энергии ( 1) исключение составляют элементы нулевой группы и подгруппы ПА. Выделяющуюся при этом энергию называют сродством к электрону и выражают в электрон-вольтах (необходимо помнить, что положительная величина означает выделение энергии). [c.70]

    СВОЙСТВА СОЕДИНЕНИЙ ЭЛЕМЕНТОВ НУЛЕВОЙ ГРУППЫ ПЕРИОДИЧ. СИСТЕМЫ [c.263]

    Сопоставляя разные элементы, можно установить, что внешние оболочки электронов являются наиболее устойчивыми у атомов инертных газов, чем и объясняется химическая инертность этих элементов. Рассмотрение периодической системы приводит к выводу, что наиболее устойчивым внешний электронный слой -становится тогда, когда он состоит из восьми электронов (для первого слоя — из двух электронов), как это имеет место у атомов элементов нулевой группы периодической системы — инертных газов. [c.84]

    Всем этим допущениям ближе всего соответствуют элементы нулевой группы периодической системы, находящиеся в жидком состоянии. Так как гелий обнаруживает заметные квантовые эффекты, то экспериментальные данные для проверки теоретических выводов берутся главным образом из исследований свойств жидких аргона, криптона, ксенона и неона ), [c.155]


    Энтропия парообразования в точке кипения для элементов нулевой группы в жидком состоянии равна примерно [c.188]

    Открытие соединений элементов нулевой группы. [c.689]

    К легким газам в хроматографии обычно относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, оксид и диоксид углерода. Определение состава смесей, включающих эти газы, необходимо при анализе атмосферы нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком многих смесей. Для хроматографического разделения таких смесей необходимы сильные сорбенты типа активных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. Кроме того, вследствие сорбции газа-носителя может происходить изменение свойств адсорбента по отношению к разделяемым веществам, и, таким образом, природа подвижной фазы оказывает влияние на селективность колонки и форму регистрируемых пиков [231]. [c.221]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включающих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. [c.257]

    Заслуживает особого упоминания теория кубического атома, высказанная в 1916 г. Д ж. Льюисом (1875—1946) и развитая впоследствии Ленгмюром (1881—1957). Согласно Льюису, группы из двух или восьми электронов чрезвычайно устойчивы, чем и объясняется химическая инертность элементов нулевой группы периодической системы. По этой теории, атом гелия имеет два электрона, атом неона также два электрона, расположенных внутри куба, образованного восемью электронами. В аргоне еще восемь электронов расположены в вершинах куба, внешнего по отношению к кубу неона. Атомы различных элементов стремятся к захвату или к отдаче электронов, так чтобы приобрести при этом сходство с гелием или другим элементом нулевой группы. [c.323]

    Не образуют химических соединений с водородом элементы, нулевой группы. [c.15]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Среди клатратных соединений выделяют класс гидратов газов, частными примерами которых являются рассмотренные ранее гидраты элементов нулевой группы. Известны две наиболее распространенные структуры гидратов газов. В одной из них в элементарной ячейке клат-ратного соединения содержится 46 молекул воды, которые образуют 6 больших и 2 малые полости. Эта структура устойчива, если полости заполнены такими молекулами, как С12, СН3С1, 50з и др., при атмосферном давлении газов. При заполнении полостей могут образовываться соединения, содержащие 5,76 НдО, однако обычно наблюдается лишь частичное использование полостей (например, гидрат хлора С1 -7,ЗН20), [c.355]

    Природные газы представляют собой смесь большого числа элементов и химических соединений, содержат в своем составе углеводороды предельного ряда метан, этан, пронан, изо- и -бутаны, нентан и его изомеры, в небольших количествах в природных газах присутствуют гексаны, гептаны и более тяжелые углеводороды, включая ароматические и нафтеновые соединения (бензол, толуол, ксилолы, циклонентан, циклогексан и др.). В природных газах всегда в том или ином количестве содержатся азот, диуокисг. углерода, пары воды, элементы нулевой группы (гелий, неон, аргон и др.). [c.5]

    Подобно атомным объемам периодический характер имеет и изменение атомных радиусов (см. табл. 5 гл. I), а также в значительной мере и тип кристаллической решетки элемента в твердом состоянии. Б гл. XIII показано, что все щелочные металлы обладают объемпоцентрированной кубической решеткой, а элементы подгруппы 1В образуют гранецентрированные кубы. Элементы нулевой группы, возможно, за исключением гелия, обладают гранецентрированными решетками, а элементы четвертой группы, за исключением свинца, дают кристаллы со структурой алмаза. Точность определения атомных констант позволяет особенно убедительно подтвердить химическое расположение элементов в периодической системе. Закономерное изменение свойств наблюдается даже в таких деталях, как дублетное расщепление в атом-ных спектрах, что видно, например, из следующих данных  [c.193]

    Открытие элементов нулевой группы. Тщательные и весьма точные опыты, предпринятые Рэлеем и Рамзаем, столкнувшимися с проблемой различия в плотностях азота, полученного из. воздуха после удаления кислорода, и азота, полученного разложением азотсодержащих соединений (в первом случае плотность оказалась выше на 0,1%), привели к открытию 5 редких газов, что знаменовало собой выдающийся успех классической экспериментальной химии. К моменту открытия аргона, 8Аг (1894 г.) и гелия 2Не (1895 г.) не было точно известно, какое место они должны занять в периодической системе. Однако Рамзай решил, что оба эти элемента принадлежат к одному семейству, и для Не определил место в таблице Менделеева между Н и зЫ, а для Аг (который в то время обозначали символом А) —между 1 С1 и эК. В 1896 г. были предсказаны свойства трех еще не обнаруженных газов, относящихся к тому же семейству, и в течение мая — июля 1898 г. были открыты криптон збКг, неон юЫе и ксенон 54Хе, принадлежность которых к так называемой нулевой группе была доказана исследованием их свойств. Действительно, было бы неестественным такое расположение элементов в периодической таблице, когда непосредственно за галогенами следовали бы щелочные металлы, диаметрально отличающиеся от них по свойствам включение между ними нулевой группы оказалось посновапным и придало периодической системе законченный [c.29]

    Молекулярные ионы [RaPo]+ относятся к так называемым ониевым ионам , у центрального атома которых реализуются устойчивые восьмиэлектронные конфигурации, аналогичные конфигурациям соответствующих элементов нулевой группы. Характер молекулярных орбит (в данном случае зр -гибридных орбит), унаследованных этими ионами от материнских молекул, отвечает их устойчивым состояниям. Как сами ионы, так и их производные хорошо известны в химии аналогов полония (RgSeX и RsTeX). Ионы этого типа в общем являются устойчивыми образованиями, хотя степень их устойчивости зависит от свойств элемента и характера структурных единиц (радикалов и атомов галогена). [c.75]

    Вместе с тем выяснились большие трудности, стоящие перед теориями, использующими в той или иной форме аппарат коррелятивных функций распределения. Хотя теоретические формулы, полученные Боголюбовым и рядом других исследователей, выведены для случая самых простых одноатомных жидкостей типа элементов нулевой группы в жидком состоянии, все же эти формулы оказались весьма сложны. Задача обобщения теории на те случаи, когда молекулы жидкостей не обладают сферической симметрией и взаимодействуют друг с другом по закону более сложному, чем потенциал Леннард-Джонса, связана с очень большими математическими трудностями. Поэтому вполне оправданы попытки построения приближенной теории, основаипой не только на общих положениях статистической механики, но и на применении специальных моделей жидкости и ряде эмпирических допущений, позволяющих добиваться совпадения выводов теории с опытом. Вполне возможно, что па этом пути постепенно удастся найти методы, позволяющие значительно упростить и приближенно решить задачу для ряда частных случаев и тем самым облегчить развитие более общей и строгой теоррш. [c.174]

    Сравнение теории с опытом. Модель раствора, положенная в основу теории свободного объема , наиболее близка растворам жидких элементов нулевой группы. Так как растворы этих элементов мало изучены, для сравнения теории с опытом были использованы данные о растворах более сложных молекул циклогексана, бензола, четыреххлористого углерода, неоиентана (тетра-метилметана) и сероуглерода. Эти молекулы лишь грубо приближенно можно считать сферическими с изотропными силовыми полями. [c.391]

    Таким образом, примеси (за исключением лищь элементов нулевой группы) в одних концентрациях промотируют катализатор, в других — отравляют его. [c.231]

    ЛЬ 11, С, 20, 369. Слюсарь В. П. Вязкость элементов нулевой группы и изотопов водорода при постоянной плотности Автореферат, дис, канд,, физ.-мат. наук. Харьков 1973. 19 с. 370. Рид Р., Шервуд Т. Свойства газов и жидкостей, М, Гостоптехиздат, 1964, 334 с. [c.649]

    Другие элементы нулевой группы периодической таблицы — неон, аргон, кринтон, ксенон и радон — в химическом отношении также инертны, поскольку и их электронная структура весьма устойчива. Подобные исключительно устойчивые электронные структуры наблюдаются в том случае, когда вокруг ядра имеется 2, 10, 18, 36, 54 и 86 электронов. [c.94]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включа-эющих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных т металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, сили-жагелей, алюмогелей и молекулярных сит. Однако вследствие очень [c.228]


Смотреть страницы где упоминается термин Элементы нулевая группа: [c.161]    [c.59]    [c.199]    [c.211]    [c.17]   
Учебник общей химии 1963 (0) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Элемент группы



© 2025 chem21.info Реклама на сайте