Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство к отрицательное

    Энергия ионизации и сродство к электрону. Наиболее характерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации. [c.100]


    Допустим, что в мембране одновременно происходят два необратимых и взаимосвязанных процесса, движущие силы которых и Х2. Величина Х1 соответствует движущей силе векторного процесса транспорта -го компонента газовой смеси, в качестве которой принимают отрицательную разность химических потенциалов на границе мембран ( 1 = —Ац,). Сопряженный процесс с движущей силой Ха может быть векторным, как например, перенос у-го компонента, или скалярным, как процессы сорбции и химические превращения. Феноменологическое описание этих процессов идентично, сорбцию можно рассматри-вать как отток массы диффундирующего компонента из аморфной фазы в кристаллическую, где миграция вещества незначительна. В качестве движущей силы скалярного процесса примем химическое сродство Х2=Аг. Заметим, что, согласно принципу Кюри — Пригожина, сопряжение скалярных и векторных процессов при линейных режимах возможно в анизотропных средах (например, в мембранах гетерофазной структуры) или даже в локально-изотропных, но имеющих неоднородное распределение реакционных параметров [1, 5]. [c.17]

    Еще одним свойством атомов, которое сильно зависит от их орбитальной электронной конфигурации, является сродство к электрону (СЭ), представляющее собой изменение энергии, которым сопровождается присоединение электрона к изолированному атому с образованием отрицательного иона  [c.400]

    Процесс образования отрицательного иона Н из атома экзотермический (сродство к электрону 0,75 эВ), поэтому для водорода в степени окисления —1 возможны ионные соединения. [c.272]

    При бомбардировке молекул электронами наблюдается появление не только положительных, но и отрицательных ионов. Так, при бомбардировке метана электронами наблюдается появление ионов СНГ, СН , С и Н . Присоединение электронов к молекулам, радикалам или атомам обусловлено наличием у них сродства к электрону. При образовании отрицательных ионов очень часто энергия, выделяющаяся в результате присоединения электрона, превосходит энергию диссоциации молекулы. Например, для галогенов наблюдается процесс [c.78]

    И наоборот, если реакция протекает слева направо, то сродство положительно если реакция протекает справа налево — сродство отрицательно. [c.172]

    Отрицательно заряженные ионы образуются у таких атомов и молекул, которые характеризуются положительным значением электронного сродства. Отрицательные ионы образуются из молекул и атомов водорода, кислорода, хлора, углерода, но не образуются из атомов благородных газов, имеющих отрицательное электронное сродство. [c.249]

    К числу факторов, определяющих тепловой эффект, относится также заряд ядра и его поле. Сродство аммиака к протону составляет около 206 ккал. Между тем сродство отрицательного иона водорода к молекуле ВНз с образованием изоэлектронного иона ВН4 равно примерно 75 ккал. [c.227]


    Если присоединение к атому электрона с образованием отрицательного иона сопровождается выделением энергии, СЭ имеет положительное значение. Если этот процесс требует затраты энергии, СЭ отрицательно. (Известные значения сродства к электрону для некоторых элементов приведены в табл. 9-1.) [c.400]

    Качественно такие же соотношения характерны вообще для любых экзотермических реакций при небольшом положительном или отрицательном сродстве (т. е. для той области температур, где константа равновесия Кр 1 -ь 0,1). Если сродство положительно и велико, то и при стехиометрическом соотношении полнота реакции А,равн более или менее близка к 100%. Если же сродство отрицательно, а по абсолютной величине велико, то это означает, что когда в выражении Кр в числителе стоят вещества, записанные в термохимическом уравнении справа, то Кр представляет собой весьма малую дробь. [c.327]

    Энергия, выделяющаяся при образовании отрицательного иона из нейтрального атома и электрона, т, е. отвечающая процессу >4 + =>4 , называется сродством к электрону. Сродство к электрону с обратным знаком представляет собой потенциал ионизации, т. е. энергию, необходимую для отрыва электрона от отрицательного нона с образопанием нейтрального атома (молекулы). [c.328]

    Электронное сродство отрицательных ионов определяется из спектральных величин. Теплоты образования Q определяются калориметрически. [c.163]

    В приведенных выше уравнениях известны теплоты образования молекулярных частиц, и для каждого процесса могут быть получены относительные термодинамические энергии (Е ). Например, для уравнения с ННз определяется как теплота образования ОН3 минус теплота образования КНз. График зависимости Ет от энергий связи 15-электронов азота ( ь) демонстрирует исключительно хорошую корреляцию (рис. 16.16). Такой тип замещения эквивалентных оболочек дает хорошие корреляции и для данных по энергиям связи электронов в других элементах, например в углероде (Ь) и ксеноне ( /2) [55]. Этот вид корреляций полезен, поскольку дает возможность из некоторых измеренных энергий связи электронов оболочки и известных термодинамических параметров предсказать различные, еще не определенные термодинамические величины. Изучение приведенных выше уравнений показывает, что их можно использовать для определения сродства к протону. По некоторым непонятным причинам сродство к протону (РА) молекулы В берется как положительное число и приравнивается изменению энергии процесса (16.32) с отрицательным знаком. [c.351]

    Если потенциалопределяющими ионами являются ионы Н+ и ОН , то отсутствие заряда на поверхности (например, оксидов элементов) будет соответствовать определенному значению pH, называемому изоэлектрической точкой. В этой точке числа положительных и отрицательных зарядов одинаковы — общий заряд поверхности равен нулю. Очевидно, что изоэлектрическая точка зависит от кислотно-основных свойств вещества. Сродство к протону можно представить следующими константами диссоциации  [c.50]

    Сродство к электрону (сокращенно СЭ) атома представляет собой энергию, которая выделяется (или затрачивается, если сродство отрицательно) при присоединении к атому электрона с образованием отрицательного иона. Таким образом, можно записать  [c.45]

    Вероятность образования отрицательных ионов в результате захвата атомами и молекулами электронов определяется их сродством к электрону (табл. 1.20 и 1.21). Для молекулы и атома азота электронное сродство отрицательно, поэтому отрицательных ионов они не образуют (для атомов N — 0,72 эВ 31]). [c.27]

    Сродство К электрону выражено через энергию ионизации отрицательных ионов Э . [c.36]

    В каждом периоде стоящий у его конца галоген имеет самое большое сродство к электрону потому, что результирующий заряд ядра (с учетом влияния экранирующих электронов на более низких квантовых уровнях) для галогена оказывается больще, чем для любого другого элемента того же периода. Благородные газы имеют отрицательное сродство к электрону, поскольку в каждом атоме благородного газа указанный выще процесс требует размещения дополнительного электрона на следующем более высоком незанятом квантовом уровне. Таким образом, присоединяемый электрон оказывается не только значительно дальше от ядра, чем остальные электроны, но также в полной мере испытывает экранирующее действие всех имеющихся электронов. [c.400]

    Реакционная способность (химическое сродство) металлов и термодинамическая устойчивость продуктов химической коррозии металлов характеризуются изменением стандартных изобарноизотермических потенциалов AGf соответствующих реакций (например, окисления металлов кислородом или другим окислителем), отнесенным к 1 г-экв металла, т. е. AGf/mn (рис. 7 и 8). Более отрицательные значения AGf/mn указывают на более высокую реакционную способность (химическое сродство) металла и более высокую термодинамическую устойчивость продукта химической коррозии металла. [c.27]

    Ионная связь. Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Ма+, К , анионы Р , С1") или сложными, т. е. состоящими из двух или более атомов (напрнмер, катион ЫН , анионы ОН, N03, 504 ). Простые ионы, обладающие положительным зарядом, легче всего образуются из атомов элементов с низким нотеициалом ионизации к таким элементам относятся металлы главных подгрупп I и II группы (см. табл. 4 и 5 на стр. 102). Образование простых отрицательно заряженных ионов, напротив, характерно для атомов типичных неметаллов, обладающих большим сродством к электрону. Поэтому к типичным соединениям с ионным типом связи относятся галогениды щелочных металлов, например, МаС1, СзР и т. п. [c.150]


    В соответствии с уравнением (И. 10) влияние температуры на химическое сродство определяется знаком и величиной Д5.Это позволяет нагреванием (или охлаждением) увеличить или уменьшить реакционную способность веш,ества или совокупности веществ, усилить стремление к протеканию нужного процесса (из совокупности конкурирующих реакций, т. е. обладающих близкими АО) и т. д. Если Д5 >0, то переход на высокотемпературный режим благоприятствует течению процесса это особенно важно в тех случаях, когда при низких температурах, вопреки отрицательному значению АО, реакция в силу инертности реагентов не протекает. Так, хотя для реакции [c.270]

    Как следует из данных табл. 6 и рис. 14, наибольшим сродством к электрону обладают р-элементы VII группы. Наименьшее и даже отрицательное сродство к электрону имеют атомы с конфигурацией 5 (Ве, М0, 7п) и 5 (Ne, Аг, Кг) или с наполовину заполненным р-полслоем (N, Р, As). Это служит дополнительным доказательством повышенной устойчивости указанных электронных конфигураций. [c.35]

    На адсорбцию из растворов существенно может влиять изменение температуры. Так как энтальпия смачивания отрицательна, то в соответствии с уравнением Вант-Гоффа сродство адсорбата к адсорбенту должно уменьшаться с повышением температуры, причем в бинарных растворах оно сильнее уменьшается для компонента, у которого больше отрицательная энтальпия смачивания (чистой адсорбции). Таким образом, с повышением температуры происходит выравнивание констант адсорбции компонентов и приближение константы обмена к единице, а величины гиббсовской адсорбции — к нулю. Закономерности адсорбции из растворов существенно меняются при изменении растворимости в зависимости от температуры. С увеличением растворимости уменьшается константа распределения (благодаря усилению взаимодействия с растворителем). Однако если с повышением температуры растворимость растет, то появляется возможность увеличения концентрации в равновесном растворе и соответственно на поверхности адсорбента. Изменение растворимости при изменении температуры может привести к расслаиванию в порах адсорбента — к капиллярному расслаиванию. [c.155]

    В отличие от этих соединеиий в иоде, галогеноводородах, а также в СС1 , FзJ, СОаКз образование атомного иопа галогена X оказывается возможным при энергии электронов, равной или близкой нулк. Так, папример, сечение процесса е -Ь НХ = Н + X имеет максимум иблизи 0,8(НС1), 0,2(НВг и ВВг) и 0,05 Эй (Н1), причем в каждом случае процесс начинается при энергии электронов, почти точно совпадающей с величиной Лцх — (О — теплота диссоциации Е — сродство к электрону). В максимуме вероятности расщепления молекулы НХ под действием электрона с образованием отрицательного иона оказываются величинами порядка от 1 до С, 01. [c.188]

    Проявление отрицательной или положительной валентности дг. ниого атома зависит от полярной природы элемента, с которым он соединяется. Проявление валентности одного рода, как правило, препятствует проявлению валентности другого рода. Отрицательная электровалентность в меньшей степени, чем положительная, склонна достигать максимума, а элементы первых трех групп вообще обладают только гипотетически.ми отрицательными валентностями. Это связано с тем, что, по мнению Абегга, сродство отрицательного электрона к материн меньш е, чем положительного [там же, стр. 106]. Подтверждение этого следствия из химических данных Абегг находит в рабогах физиков с катодными лучами, доказавших прочную связь положительных электронов с материей, и наоборот, возможность получения отрицательных электронов в свободном виде. [c.16]

    Пределы возможного энергетического сопряжения базисной реакции, у которой сродство всегда больше нуля (/>0), по услови 9 сущеет-вования открытой каталитической системы (87) с любыми реа> ция 1и кинетаческо го континуума открытой каталитической системы, у котор 1х сродство отрицательно ii<0), определяются, очевидно, неравенс"вом [c.133]

    Сродством атома к электрону называют изменение энергии в процессе присоединения электрона к свободному атому с образованием отрицательного иона при температуре О К А + е = А (атом и ион находятся в своих основных состояниях). При этом электрон занимает низшую свободную атомную орбиталь (НСАО), если ВЗАО занята двумя электронами. Если ВЗАО вырождена и занята не полностью, присоединяемый электрон заселяет ее с соблюдением первого правила Гунда. Из различных методов определения СЭ наиболее прямой и точный — измерение минимальной энергии фотоотрыва электрона от отрицательного иона. [c.39]

    Сходство к электрону может быть выражено в кДж/моль или эВ/атэм. Сродство к электрону численно рав но, но противоположно по знаку энергии ионизации отрицательно заряженного иона Э". [c.35]

    Реакционная способность химической системы при заданных условиях характеризуется скоростью и возможной глубиной химической реакции. Направление и глубина химической реакции определяются законами химической термодинамики. Согласно второму закону термодинамики условия направленности и равновесия химических реакций при постоянных Я и Г записываются в форме О (см. гл. X). В качестве меры химического сродства реакции принимается значение нормального (стандартного) сродства Afi° 298) (см. 75). Нормальное сродство мэжет быть меньше и больше нуля. Термодинамически наиболее вероятны реакции, у которых значения нормального сродства наиболее отрицательны. По значению (298) можно судить о вероятности той или иной реакции при парциальных давлениях (активностях) исходных и конечных продуктов, равных единице. Однако не следует делать вывод, что реакция вообще неосуществима, если А ° Т) > 0. Изменив парциальные давления начальных или конечных продуктов, можно создать условия, когда А О(Т) будет меньше нуля, и реакция пойдет слева направо. В табл. 28 привета б л и ц а 28. Степень превращения исходных веществ (х) и (2Я8) процесса, протекающего до равновесного состояния при отсутствии продуктов реакции в исходной системе [c.522]

    Квантовомеханические расчеты показывают, что при присоединении двух и Более электронов к атому энергия отталкивания всегда больше энергии иритяжения — сродство атома к двум и более электронам всегда отрицательно. П-оэтому одноатомныз -Таблица 1.2. Сродство к электрону атомов некоторых э.кмгнтов [c.32]

    Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно из этого следует, что для атомов большинства металлов присоединение электронов энергетически невыгодно. Сродство же к электрону атомог, неметаллов всегда положительно и тем больше, чем ближе к благородному газу расположен неметалл в периодической системе эго свидетельетвует об усилении неметаллических свойств по мере приближения к концу периода. [c.103]

    Несмотря на меньшую энергию сродства к электрону у фтора, чем у хлора (см. табл. 23), фтор яиляется асе же самым сильным окислителем среди галогенов. Объясняется это следующим. Превращение газообразного хлора или фтора в отрицательно заряженные нони можно рассматриаать, как состоящее из двух стадий — диссоциации молекул на отдельные атомы [c.357]

    Общс й особенностью атомов металлов яв.чяются их большие сравнении с атомами неметаллов размеры (см. 33). Внешний лектрйиы Q атомах металлов находятся иа значительном удале-1ИИ 01 я.дра н связаны с ним сравиительно слабо — атомы метал-тов характеризуются кпзкнми потенциалами ионизации (см. 34, габл, 4 и 5) и близким к н лю или отрицательным сродством ( электрону. Именно поэтому металлы легко отдают валентные электроны, выступая в качестве восстановителей, и, как правила, не способны присоединять электроны — проявлять окислительные свойства. [c.531]

    Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия, все они имеют в наружном электронном слое атома восемь электронов, образующих очень устойчивую систему. Также устойчива и электронная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как иравнлб, отрицательными значениями энергии сродства к электрону. [c.667]

    Энергия сродства к электрону характеризует количество эне[>-гии, которое выделяется ГОгп—поглощается при присоединении электрона к нейтральному атому с образованием отрицательно заряженного иона. [c.48]

    Литий и натрий имеют умеренное сродство к электрону сродство к электрону бериллия отрицательно, а у магния оно близко к нулю. В атомах Ве и М валентная х-орбиталь полностью заполнена и присоединяемый электрон должен заселять расположенную выше по энергии р-орбиталь. Азот и фосфор имеют небольшое сродство к электрону, потому что присоединяемый электрон должен спариваться в этих атомах с одним из электронов на полузаполненнь х р-орбиталях. [c.400]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Поле ядра атома, удерживающее электроны, притягивает также и свободный электрон, если он окажется вблизи атома правда, этот электрон испытывает отталкивание со стороны. электронов атома. Теоретический расчет и экспериментальные данные показывают, что для многих атомов энергия притяжения дополнительного электрона, к ядру превышает энергию его отталкивания о1 электронных оболочек. Эти атомы могут присоединять электрон, образуя устойчивый отрицательный однозарядный ион. Энергию отрыва электрона от отрицательного однозарядного иона называют сродством атома к электрону. Подобно энергии ионизации сродство к электрону обычно выралоется в электронвольтах. [c.32]

    Хотя из обш,их соображений ясно, что нейтрализация ионов должна вносить вклад в выход продуктов радиолиза, прямые доказательства этого были получены сравнительно недавно в работе [81], где исследовалось влияние алсЕтрического поля на радиолпз метана. Полученные результаты показывают, что —30% всего водорода образуется вследствие рекомбинации поло 1 ителы1Ь[Х попов с электронами или отрицательными ионами. Последние возникают либо при взаимодействии электрона с молекулами метана е СН4 = СНд -h Н (или СНд + И )t либо за счет прямого прилипания электрона к частицам, обладающим положительным сродством к электрону. [c.197]

    Уравнения (11.76) и (11.77) называют уравнениями электрокапиллярной кривой. Из них следует, что поверхностное натяи<ение при условии постоянства емкости двойного электрического слоя изменяется в соответствии с уравнением параболы (рис. 11.8). Вершина параболы (рис. И. 8) отвечает максимальному поверхностному натяжению Омакс, а сама парабола симметрична, что по физическому смыслу означает предположение равного сродства катионов и анионов, выступающих в роли противоионов, к поверхности, имеющей соответственно отрицательный и положительный потенциал. Уменьшение полол<ительного потенциала, как и отрицательного, ведет к увеличению поверхностного натяжения. Однако в реальных системах емкость двойного электрического слоя несколько изменяется с изменением потенциала и поэтому экспериментальные электрокапиллярные кривые обычно не являются симметричными. [c.49]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]


Смотреть страницы где упоминается термин Сродство к отрицательное: [c.75]    [c.36]    [c.351]    [c.21]    [c.394]    [c.188]    [c.88]    [c.291]    [c.321]   
Химическая связь (0) -- [ c.57 ]

Химическая связь (1980) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство

отрицательная



© 2025 chem21.info Реклама на сайте