Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные принципы адсорбционной хроматографии

    Основные принципы адсорбционной хроматографии [c.44]

    Принцип метода. Приведенные в предыдущем разделе основные закономерности газовой адсорбционной хроматографии справедливы и для газожидкостной хроматографии, с той лишь разницей, что в последнем случае нужно рассматривать не процесс адсорбции и десорбции газа или пара на поверхности твердого вещества-адсорбента, а процесс растворения и выделения газа или пара в жидкой пленке, удерживаемой твердым инертным носителем. [c.101]


    Наряду с газо-адсорбционной хроматографией широко применяется также газо-жидкостная хроматография. В этом методе разделения газовых смесей на индивидуальные составные части заложен тот же основной принцип, который описан выше. Однако в качестве неподвижной фазы, на которой происходит поглощение вводимого в колонку газа, в данном случае применяются различные нелетучие жидкости. Для увеличения общей поверхности поглощения жидкий сорбент наносится на крупнопористый инертный носитель (диатомовый кирпич, трепел и др.), не обладающий адсорбционной активностью по отношению к компонентам анализируемой газовой смеси. [c.46]

    В небольшой главе нельзя детально описать все разновидности газовой хроматографии, отличающиеся по основному принципу работы (адсорбционная или распределительная хроматография), по характеру анализируемых образцов, по целям работы (аналитическая или препаративная хроматография), а также по конструктивным особенностям аппаратуры. Поэтому в настоящей главе даны лишь основные принципы работы при хроматографии в системах газ — адсорбент и газ — жидкость. [c.512]

    После второй мировой войны непрерывный адсорбционный метод был распространен на разделение смесей углеводородов. Основным элементом, отличающим послевоенные установки с движущимся слоем адсорбента, является включение в схему секции хроматографического разделения, в которой на основе принципа вытеснительной хроматографии производится разделение смеси на компоненты. При отводе продуктов десорбции на разных высотах колонны оказалось возможным получить достаточно чистые индивидуальные углеводороды без дополнительного фракционирования. [c.262]

    Тонкослойная хроматография является вариантом жидкостной хроматографии, протекающей в тонком слое сорбента, причем толщина слоя существенно меньше его ширины (не менее чем в 5 раз). В тонкослойной хроматографии используются те же варианты, что и в колоночной жидкостной хроматографии. По составу фаз, участвующих в процессе хроматографического разделения, можно выделить следующие основные виды тонкослойной хроматографии [2] жидкость—[твердое тело], жидкость — [жидкость — твердое тело] и жидкость—[гель]. Разделение может быть реализовано при использовании различных принципов удерживания, поэтому тонкослойная хроматография бывает адсорбционной, распределительной, ионообменной, молекулярно-ситовой и аффинной. [c.5]


    Внутри групп веществ в большинстве случаев рассматриваются вначале менее полярные соединения, а затем более полярные. Этот принцип расположения непосредственно вытекает из метода. Вспомним здесь наглядно представленную на рис. 69 зависимость между тремя основными параметрами хроматографического процесса. Это схематическое изображение базируется в первую очередь на опытных данных адсорбционной хроматографии, которые могут быть сформулированы следующим образом. [c.138]

    В трех последующих главах обсуждаются принципы основных видов жидкостной хроматографии (адсорбционной, распределительной и ситовой), объясняется механизм селективности и приводятся примеры достигаемого разделения в отдельных рассматриваемых системах, подробно говорится об используемых материалах (особенно неподвижных фазах), причем, как всегда, основное внимание уделяется практическим вопросам. [c.12]

    Методика определения хлорофоса в молоке, тканях животных и яйцах кур газо-адсорбционной хроматографией. Основные положения. Принцип метода. Метод основан на определении хлорофоса в экстрактах из исследуемых проб с помощью газового хроматографа с термоионным детектором. [c.129]

    Излагаются основные принципы и различные методы адсорбционной газовой хроматографии. [c.191]

Рис. 4.32. Основной принцип аффинной адсорбционной хроматографии. Лиганд Ь ковалентно присоединен к цепи носителя. Адсорбент связывает только молекулы фермента Е, обладающего специфическим сродством к Ь. Белки Р проходят через колонку, не связываясь с адсорбентом. Рис. 4.32. <a href="/info/10146">Основной принцип</a> <a href="/info/1613884">аффинной адсорбционной хроматографии</a>. Лиганд Ь ковалентно присоединен к <a href="/info/3033">цепи носителя</a>. Адсорбент связывает <a href="/info/1571777">только молекулы</a> фермента Е, обладающего специфическим сродством к Ь. Белки Р <a href="/info/336204">проходят через</a> колонку, не связываясь с адсорбентом.
    Важным вариантом адсорбционной хроматографии является ионообменная хроматография (см. разд. Ионообменная хроматография ). Основное его отличие заключается в том, что состав подвижной фазы выбирается так, чтобы при используемом адсорбенте растворенное вещество становилось иммобилизованным. При этом вещество остается неподвижным до тех пор, пока не будет добавлена новая подвижная фаза. В принципе здесь нет особых отличий, однако адсорбция в этом случае исключительно сильна. [c.178]

    Комплекс хроматографических методов в этом отношении находится в. особо выгодном положении. Прежде всего это наиболее современный, быстрый и эффективный метод определения основных адсорбционных характеристик. К тому же хроматография в принципе позволяет измерять адсорбцию во время каталитического процесса. Как будет показано ниже,, хроматография применима к изучению как катализаторов, так и каталитических процессов и, кроме того, к изучению ряда вспомогательных характеристик. [c.15]

    В пособии изложены основные принципы. хроматографического анализа в применении к исследованию многокомпонентных растворов неорганических ве-ш,еств, теоретическое обоснование каждого метода, рассмотрены возможности того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообразовательная, окислительно-восстановительная хроматография в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, какие могут возникнуть в работе химика-аналитика как в чисто прикладном аспекте, так и в процессе научного эксперимента. Большое внимание в настоящем учебном руководстве уделено ионообменной хроматографии, ионообменни-кам и рассмотрению закономерностей статики и динамики ионообменных процессов, а также использованию ионитов, особенно органических, в аналитической химии. [c.2]

    Настоящее учебное пособие предназначено для студентов химических специальностей университетов. В методическом отношении оно отражает многолетний опыт преподавания автором спецкурса Хроматографический анализ растворов неорганических соединений в Одесском государственном университете им. И. И. Мечникова. В книге рассматриваются основные принципы хроматографии, их применение к исследованию многокомпонентных водных растворов неорганических веществ, теоретическое обоснование каждого метода, возможности использования того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообра-зовательная, окислительно-восстановительная в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, которые могут возникнуть в работе химика-аналитика. [c.3]

    Газовая хроматография представляет собой очень удобный метод для измерения количеств реагирующих веществ, действительно адсорбированных на новерхности катализатора во время протекания реакции. Рассмотрим сначала общие соображения. Важно понять, что нри определенном давлении данного реагирующего вещества его количество, адсорбированное на катализаторе при равновесии (определяемое из прямых адсорбционных измерений), может быть несколько меньше или вообще не соответствовать количеству этого реагирующего вещества, фактически адсорбированному во врем я каталитической реакции нри том же самом парциальном давлении. Так, нри каталитическом разлои ении германа ОеН4 на металлическом германии поверхность во время реакции оказалась покрытой сплошным монослоем хемосорбированного водорода, тогда как максимальное покрытие, достигаемое в отдельных равновесных измерениях адсорбции водорода на германии, было меньше 60% [528—532]. Заполнения поверхности, получаемые во время действительного хода катализа, должны зависеть от механизма реакции и в особенности от то11 ее стадии, которая определяет скорость процесса. Это в настоящее время совершенно неоспоримо установлено Тамару [532—540], главным образом нри изучении реакций синтеза и разложения аммиака на металлических катализаторах. В отличие от многих предшественников, изучавших эту реакцию [541], Тамару обращал основное внимание на измерение количества вещества, адсорбированного во время катализа. Он нашел, кстати, что во время синтеза аммиака на дважды про-мотированных /келезных катализаторах адсорбция азота значительно ускоряется в присутствии водорода и ее скорость оказывается почти в десять раз больше скорости образования аммиака (см. гл. 8). Тамару был одним из первых исследователей, понявших [533], что измерения адсорбции на поверхности во время катализа можно проводить, используя принципы газовой хроматографии. [c.148]


    Определение Рачинского Основной принцип хроматографии состоит в том, что произвольная жидкая пли газообразная смесь веществ разделяется в процессо движения через слой сорбента, если существует различие в адсорбционном взаимодействии комноноптов смеси с сорбентом . [c.32]

    Принцип градиентно-элюентного варианта заложил Цвет. Он для ускорения вымывания из колонки зеленых, наиболее сильно сорбирующихся пигментов к проявляющему растворителю — петро-лейному эфиру — добавлял, этиловый спирт. Этим приемом до сих пор пользуются многие исследователи (в основном биологи), причем в процессе опыта часто добавляют к проявляющему растворителю не одно сильно сорбирующееся вещество, а несколько в последовательности, соответствующей увеличению их полярности. Такая последовательность определяется так называемым элюотроп-ным рядом. Усовершенствовали градиентно-элюентный вариант шведские ученые Тизелиус и его сотрудники в начале пятидесятых годов. Но теория не была разработана. Жуховицкий и Туркельтауб в 1954 г. предложили назвать этот вариант адсорбционным спектральным анализом и сделали попытку разработать теорию применительно к газовой хроматографий. Однако практического применения в газовой хроматографии в отличие от жидкофазной хроматографии этот вариант не получил. Основными препятствиями здесь являются трудности, возникающие при детектировании разделяемых компонентов, поскольку одновременно детектируется переменная концентрация вытеснителя, а также возникает необходимость менять или регенерировать адсорбент после каждого опыта. Это смещает нулевую линию на выходной кривой и вызывает потерю времени на замену и регенерацию адсорбента. [c.20]

    Фронтально-адсорбционное обогащение на цеолитах можно проводить, используя их молекулярно-ситовое действие [36]. Этот метод применен для концентрирования примесей в спиртах высшей очистки и других водочных продуктах [37—39]. Небольшие концентрации (менее 1-10" %) микропримесей в этаноле высшей очистки не могут быть определены без предварительного их обогащения. Для предварительного обогащения примесей здесь успешно может быть использована фронтальная жидкостная хроматография на колонне с цеолитом СаА. Принцип обогащения на цеолите основан на том, что основные примеси — альдегиды, кетоны, эфиры, амины, изосп-ирты, кислоты и другие соединения с нелинейными молекулами — не могут проникать в поры молекулярного сита и практически им не адсорбируются. При движении фронта жидкости вдоль хроматографической колонны, наполненной цеолитом СаА, неадсорбирующиеся из-за геометрических затруднений молекулы микропримесей продвигаются быстрее адсорбирующихся молекул, в частности воды, метанола и этанола, присутствующих в значительно больших концентрациях, чем микропримеси. Поэтому после прохождения через слой адсорбента определенного объема спирта высшей очистки из него будут извлечены практически полностью все микропримеси, которые концентрируются в самом начале фронта. Отобрав первые порции выходящей [c.191]


Смотреть страницы где упоминается термин Основные принципы адсорбционной хроматографии: [c.88]    [c.224]    [c.13]   
Смотреть главы в:

Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом -> Основные принципы адсорбционной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Хроматография адсорбционная



© 2025 chem21.info Реклама на сайте