Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ хроматографический водных растворов

    Для оценки содержания в природных и сточных водах индивидуальных органических соединений все чаще используется газовая и тонкослойная хроматография. Разрабатываются методы хроматографического определения таких важных примесей, как пестициды, нефтепродукты, отходы целлюлозно-бумажной и химической промышленности. Применяются и химические методы анализа органических компонентов к сожалению, методы анализа разбавленных водных растворов органических веществ развиты пока плохо нужна схема систематического анализа смесей органических соединений в водах. Для онределения фенолов, пиридина, анилина существуют люминесцентные методы. Минеральные компоненты чаще всего определяют спектральными, электрохимическими и химическими методами. Для определения фторидов удачно использовали фторид-селективный электрод делаются попытки применить ионоселективные электроды для определения и других галогенидов, цианидов, а также сульфидов. [c.116]


    Для хроматографического анализа с использованием пластинок силуфол UV-254 веществ, синтез которых описан в настоящем руководстве, могут быть рекомендованы следующие системы л -ди-нитробензол, о- и п-нитрофенол, п-нитроанилиновый красный (бензол или петролейный эфир — ацетон 5 1) метиловый оранжевый (пропиловый спирт — триэтиламин — вода 2 1 1) л1-нитробен-зойная кислота (2-бутанол - 3% водный раствор аммиака 5 2). [c.65]

    Ф. Л. Шемякин и Д. В. Романов (1949) разработали хроматографический метод анализа водных растворов смесей катионов металлов на колонках нз пермутита. Предложены пермутиты оптимального состава по треугольнику Гиббса. Для этой же цели можно применять окись алюминия н анализировать металлы и сплавы  [c.144]

    Помимо хроматографического метода анализа, для разделения смесей, содержащих вещества, растворимые в органических растворителях лучше, чем в воде, применяют извлечение растворенного вещества из водного раствора [c.481]

    Содержание гликоля определяют хроматографическим анализом водных растворов. [c.37]

    Он мах и Муди предложили метод определения остаточного капролактама в ПА 6, включающий экстракцию водой с последующим хроматографическим анализом водного раствора [16]. [c.249]

    Для питьевой воды и природных вод эти методы описаны в ГОСТе [0-2] и в ряде монографий [0-15 0-16 0-23 0-69 0-17]. Для определения металлов в водных растворах —в питьевой воде и сточных водах—наряду с химическими применяются физические и физико-химические методы полярографический, спектрографический, опектрофотометрический, хроматографический, флуориметрический, атомно-абсорбционный, масс-спектрометрический, потен-. циометрический, амперометрический и многие другие в разных их модификациях [77, 0-10 0-1 0-24 83]. Электрохимическими методами анализа-в водных растворах определяют металлы (по 150—200 проб в день с высокой чувствительностью) [0-50]. По данным [0-10], обычно используемые весовые и объемные методы определения неорганических веществ в водных растворах недостаточно чувствительны. Для определения каждого металла приходится его отделять от остальных металлов и различных примесей. Эти методы трудоемки и требуется много времени для анализов. Современные физические методы очень чувствительны и точны, не требуют удаления примесей, создают возможность быстрого определения и автоматизации анализа [0-33]. [c.16]


    Элементарный иод в растворе медленно присоединяется к большинству ненасыщенных соединений. Из-за этого, а также ввиду доступности универсальных реагентов 1Вг и I I иод относительно редко используют в обычных анализах. Однако если анализируемое ненасыщенное соединение, нерастворимое в воде, нанести на подходящий носитель, например хроматографическую бумагу, или разделить смесь таких соединений на хроматографиче ской бумаге, пропитанной силиконовым маслом или определенными алканами, то эти соединения оказываются в форме, в которой они высокоактивны даже по отношению к элементарному иоду в водном растворе. Свободный иод легко генерировать по мере необходимости путем подкисления раствора иодида и иодата  [c.230]

    Подобно тому, как в ЖЖХ перемена мест стационарной и подвижной фаз привела к появлению нового хроматографического метода, обращение фаз оказалось возможным и для системы газ - жидкость. Жидкостно-газовая хроматография является одним из самых молодых хроматографических методов. Экспериментальное доказательство принципиальной осуществимости ЖГХ-процесса и первые примеры его практического применения относятся к 1982 году [112]. Оно несколько опередило теоретические предсказания принципиальной возможности осуществления подобного процесса и обоснования его перспективности [113]. К настоящему времени можно считать доказанным, что данный метод является эффективным способом пробоподготовки при анализе постоянных газов, растворенных в воде и водных растворах. [c.214]

    Для обнаружения сахарина или дульцина предварительно подкисленный водный раствор экстрагируют этилацетатом. Отделенная этилацетатная вытяжка содержит сахарин. Кислую водную фазу подщелачивают и экстрагируют дульцин также этилацетатом. Оба полученных таким образом экстракта можно подвергнуть стандартному хроматографическому анализу на слоях силикагеля. Применяя растворитель хлороформ — ледяная уксусная кислота (90 10), получают величины hRf. сахарин 30, дульцин 50. Для обнаружения первоначально опрыскивают родамином В (реактив № 129) и затем раствором нитрата серебра (реактив № 137). [c.367]

    Другой особенностью хроматографического анализа такой сложной системы на полимерных сорбентах является тот факт, что форма пика аммиака и время его удерживания в значительной степени зависят от количества введенной пробы и его концентрации, т.е. наблюдается такое явление, когда пик аммиака как бы плавает по хроматограмме между пиками воды и сероводорода, а при высоком содержании аммиака в пробе его пик перекрывается пиком сероводорода, что затрудняет или вообще делает невозможным их раздельное определение. Особенно сильно это проявляется при анализе водных растворов. [c.63]

    Явление адсорбции было открыто во второй половине XVIII века. Шееле в 1773 г. в Швеции и Фонтана в 1777 г. во Франщш наблюдали поглощение газов углем, а Т. Е. Ловитц в 1785 г. в России наблюдал поглощение углем органических веществ нз водных растворов. Явление адсорбции газов активным углем было использовано Н. Д. Зелинским при создании противогаза для защиты от отравляющих веществ, применявшихся во время первой империалистической войны,—в противогазе пары отравляющих веществ хорошо адсорбировались из тока воздуха активным углем. Разделение веществ на основе их различной адсорбируемости широко используется в настоящее время как в промышленности, так и для аналитических целей. Впервые возможность использования адсорбции смесей для их анализа была открыта М. С. Цветом в 1903 г. в Варшаве, который применил адсорбенты для разделения окрашенных биологически активных веществ и в связи с этим назвал этот метод хроматографическим адсорбционным разделением смесей. В настоящее время хроматографические методы широко используются для анализов сложных смссей и для автоматического регулирования технологических процессов (см. Дополнение). [c.437]

    Анализ методом ГЖХ показал [949], что даже после хроматографического разделения и фракционной перегонки в продукте содержится эпоксид В. Этот результат не означает, конечно, что все результаты с такими катализаторами ошибочны, поскольку в нейтральных условиях восстановления боргидридом катализатор распадается медленно (табл. 3.2). Продажный КаВН4 часто содержит небольшие примеси NaH это приводит к тому, что иногда его водные растворы становятся сильноще-.лочными (см. [1697]). [c.106]

    Разработан метод получения нормальных парафиновых углеводородов высокой чистоты при депарафинизации нефтепродуктов спирто-водным раствором карба мида. Высокая четкость гравитационного разделения фаз в разработанном процессе обеспечивает получение из такого сырья, как дизельное топливо ромашкинской нефти, парафинов с содержанием комплексообразующих углеводородов 93—93,5%, в том числе н-алканов (по хроматографическому анализу) 98%, ароматических — около 1%. При этом расход углеводородного растворителя на промывку суспензии комплекса составляет 75—100% (масс.) на исходное топливо, что в несколько раз меньше такового в других схемах карбамидной депарафинизации с рааделением фаз на фильтрах или центрифугах. В работах [32, 89] в том или ином варианте предлагается применять прессование (на лентах, между которыми заключен комплекс-сырец на конических роликах, расположенных ради- [c.247]


    Настоящее учебное пособие предназначено для студентов химических специальностей университетов. В методическом отношении оно отражает многолетний опыт преподавания автором спецкурса Хроматографический анализ растворов неорганических соединений в Одесском государственном университете им. И. И. Мечникова. В книге рассматриваются основные принципы хроматографии, их применение к исследованию многокомпонентных водных растворов неорганических веществ, теоретическое обоснование каждого метода, возможности использования того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообра-зовательная, окислительно-восстановительная в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, которые могут возникнуть в работе химика-аналитика. [c.3]

    Этот метод пригоден, по данным Драверта и Купфера (1960), Драверта, Фельгенхауэра и Купфера (1960), для прямого количественного анализа низших одноатомных и двухатомных спиртов в водных растворах, а также специально для прямого количественного определения спирта в крови и содержания метилового спирта в винах и водках. Спирты анализируют при этом в виде эфиров азотистой кислоты. Превращение спиртов в алкил-нитриты достигается тем, что подкисленный винной кислотой водный раствор спиртов вводят шприцем в реакционную трубку, помещенную перед хроматографической колонкой и содержащую твердый носитель и нитрит натрия. Та же реакция может, однако, проходить также при применении смешивания водного раствора спиртов с нитритом натрия и заполнения реактора твердым носителем, содержащим винную или щавелевую кислоту. Во второй реакционной колонке перед разделительной колонкой, которая содержит гидрид кальция, происходит реакция с водой, присутствующей в пробе или образующейся при этерификации, с образованием водорода. [c.273]

    Для ЯМР-спектроскопии доступен СВзСК, который дает лишь очень слабые спектры для остаточного протонированного вещества. Обычный ацетонитрил является подходящим растворителем для ЭПР-спектроскопии, так как в этом растворителе ион-радикалы более стабильны, чем в воде кроме того, благодаря более низкому значению диэлектрической постоянной этого растворителя конструирование соответствующей кюветы и работа с ней проще, чем в случае водных растворов. При газовом хроматографическом анализе реакционных смесей ацетонитрил может быть причиной многих трудностей. В силу своей полярности ацетонитрил дает трудные остатки ( хвосты ) на многих типах хроматографических колонок. При использовании колонок, предназначенных для полярных соединений, возникновение таких хвостов не является проблемой, однако растворитель уносится вместе с соединениями среднего молекулярного веса. [c.5]

    Н. И. Гусевым написаны Изотопы и их свойства , Поведение ионов плутония в водных растворах , Токсические свойства плутопия и приемы работы , Хроматографическое отделение плутония , Анализ препаратов плутония и сплавов И. Г. Сен-тюриным — Валентные состояния, электронная конфигурация и положение в периодической системе , Электрохимические методы , Титриметрические методы И. С. Скляренко — Металлический плутоний, его получение и свойства , Соединения плутония , Весовые методы , Отделение осаждением неорганическими и органическими реагентами М. С. Милюковой написаны Качественное определение плутония , Радиометрический метод , Колориметрические и спектрофотометрические методы и Экстракционное отделение плутония и проведена в основном библиографическая обработка материала. [c.5]

    Цель работы. Количественное определение прижси бутилового спирта в воде. Применение хроматографического метода для анализа водных растворов органических веществ. [c.228]

    Изменение лигнина, нагреваемого с водными растворами при высокой температуре, было также показано Кондо и Танака [60]. Они сравнивали выходы ванилина, полученного при окислении нитробензолом твердых пород древесины (28,96% лигнина), заболони (26,81% лигнина) и сучков после сульфитной варки Pinus densiflora. В то время как твердые породы и заболонь давали 26% общих альдегидов, из сульфитных сучков их было получено только 10,2%. Хроматографический анализ давал 12 пятен, по которым были идентифицированы ванилин, л-оксибен-зальдегид и ванилиновая кислота. [c.621]

    Первым примером использования АРП для количественного определения органических веществ является, по-видимому, исследование Вирмана [6] об энзиматическом образовании летучих компонентов малины, где отмечалась линейная зависимость высоты хроматографических пиков паров водных растворов простейших кислородных соединений от их концентрации (10 2—10- %). Видоизменив технику отбора проб, Бассет, Озерис и Уитна [7] смогли определить этим методом летучие соединения в еще более разбавленных растворах (до 10- —10- %) и обратили внимание на существенные различия в чувствительности таких анализов для соединений разных классов и увеличение наклона прямых при переходе от простейших членов гомологических рядов к более сложным [8]. [c.12]

    Эти приемы используются, например, при парофазном анализе водных растворов и сточных вод сульфатноцеллюлозных производств на содержание сернистых соединений сероводорода, метилмеркантана, этилмер-каптана, диметилсульфида и диэтилсульфида [2—5]. Проба воды (10—20 мл) набирается в стеклянный термостатируемый шприц (см. гл. 2) и смешивается с равным объемом насыщенного сульфатом натрия буферного раствора КС1 — НС1 с pH = 2. При этом подавляется диссоциация сероводорода, понижаются и стабилизируются значения коэффициентов распределения всех сернистых соединений и достигается почти двухкратное повышение чувствительности. Равновесный газ над раствором вытесняется поршнем шприца в дозирующую петлю газового крана, с помощью которого вводится в хроматографическую колонку. При дозах 0,3—0,8 мл с [c.106]

    Эксклюзионная хроматография является одним из методов жидкостно-твердофазной хроматографии, обеспечивающих разделение веществ в зависимости от размеров и формы молекул. Такая возможность открывается при использовании пористых неподвижных фаз с определенными размерами пор, соизмеримыми с размерами молекул. Метод за годы своего существования имел целый ряд названий, которые или полностью тождественны, или имеют несущественные смысловые отличия гель-проникающая, гель-фильтрационная, молекулярно-ситовая. Первый из выщеперечисленных терминов использовался при анализе органических веществ в органических растворителях, второй — в неорганическом анализе водных растворов, последний, как и современный термин — эксклюзионная, является собирательным понятием. В отличие от других хроматографических методов, использующих различия в химических свойствах разделяемых веществ, проявляющихся при их распределении между стационарной и подвижной фазами, разделение в эксклюзионной хроматографии основано на ситовом эффекте. Растворитель (подвижная фаза) заполняет в колонке как внешний объем между зернами геля, так и внутренний объем пор. Объем растворителя между зернами геля — называют промежуточным, транспортным или мертвым объемом, а внутренний объем пор — рассматривается как объем стационарной фазы. Когда в колонку вводят пробу, содержащую несколько типов ионов или молекул с разными размерами, то они стремятся перейти из подвижной фазы внутрь пор. Такое проникновение обусловлено энтропийным распределением, поскольку концентрация молекул разделяемых веществ в наружном растворе оказывается выше, чем в поровом пространстве. Но оно становится возможным только в том случае, если размеры ионов или молекул меньше диаметра пор. [c.209]

    НИЯ. Несложная техника концентрирования в парофазном анализе, позволяющая повысить чувствительность до 10 % и пригодная для количественных определений, была описана Готтауфом [11]. 10 мл анализируемого водного раствора помещают в установленный вертикально (на отметку 70 мл) цельностеклянный медицинский щприц на 100 мл, предварительно продутый чистым гелием. Затем в этот же щприц вводят 12 мл одного из указанных в табл. 3.1 высаливающих реагентов, закрывают отверстие стеклянной заглущкой и встряхивают 10 мин. Снимают заглушку и вместо нее в отверстие шприца вводят конец изготовленной из стального капилляра охлаждаемой ловушки (внутренний диаметр 1 мм, длина 50 см). Концы капилляра снабжены припаянными латунными шайбами для закрепления резиновым шлангом внахлест, как показано на рис. 3.3. Средняя часть капилляра (5 см длиной) заполнена хроматографическим носителем и погружается в сосуд Дьюара с жидким воздухом. Движением поршня шприца газовая фаза проводится через ловушку, после чего ловушку подключают к приспособлению для ввода в хромато граф (рис. 3.3, справа) и погружают в кипящую воду. Для количественных определений проводят калибровку по растворам известной концентрации, которые исполь зуют немедленно после приготовления. Такая техника [c.111]

    Эти растворители имеют благоприятные величины коэффициентов распределения определяемых веществ, доступны в хроматографически чистом виде и могут быть полностью отделены от анализируемых соединений путем поглощения в форколонке, содержащей едкое кали [15]. Рис. 4.13 показывает хроматограммы одного и того же разбавленного раствора ароматических углеводородов в уксусной кислоте без поглощения основного растворителя (а) и с его поглощением в форколонке (б). Время, необходимое для хроматографического анализа бензола, толуола и л(-ксилола, не более 5 мин, в то времл как для элюирования I мкл растворителя в условиях, приведенных в подписи к рис. 4.13, требуется около 2 ч. Аналогичный эффект достигается и для водных растворов, с той лишь разницей, что насадка форколонки не полностью поглощает воду, а селективно удерживает ее, растягивая элюирование пика воды на довольно продолжительное время (рис. 4.14). За счет этого концентрация паров воды в газе-носителе на выходе из хроматографической колонки не превышает 10 7о, что практически не влияет на качество хроматограммы, регистрируемой ионизационно-пламенным детектором. [c.199]

    Так как полиароматические гели почти не адсорбируют полярные соедин ния, их рекомендуют для разделения сильнополярных веществ воды, спирто гликолей, свободных жирных кислот, аминов, эфиров, альдегидов, кетонов, также низкомолекулярных алифатических, ароматических и хлорированнь углеводородов, а также серусодержащих соединений н других веществ. Вод как правило, при хроматографировании газов выходит раньше других вещест что особенно благоприятно для газо-хроматографического анализа веществ i водных растворов. Полиароматические гели используются также для определ ния фракционного состава полимеров (по МВ). Специальные хлорметилированн полиароматические смолы, расположенные в конце данной таблицы, предназн чены для синтеза пептидов в твердой фазе (по Меррифилду и др.). [c.172]

    Примером применения данного реагента, меченного изотопом является определение неомицинов А и В, а также неамина путем ацетилирования их первичных аминогрупп [99]. Для такого определения 10—20 мг пробы растворяют в 10 мл 0,01 н. водного раствора NaOH. К порции полученного раствора величиной 1 мл добавляют 0,1 мл 0,3 М водного раствора К2НРО4 и 0,1 мл (около 2 мэкв) уксусного-1- С ангидрида, имеющего удельную радиоактивность 50 мкКи/мл. Полученный раствор встряхивают в течение 30 мин, хотя на самом деле реакция завершается за гораздо меньшее время. Производные разделяют хроматографически на фильтровальной бумаге ватман № 40 в восходящем потоке растворителя, представляющего собой смесь 84 16 2 (по объему) / -бутанола, воды и пиперидина. Хроматографические пятна производных вырезают, помещают в закрытые камеры и в течение 2 ч нагревают при температуре 60 °С в присутствии 0,4 мл воды и 1,6 мл этанола. В полученный раствор добавляют раствор сцинтиллятора в смеси растворителей и измеряют радиоактивности растворов в камерах. По результатам этих измерений и по данным анализов стандартных проб анализируемых аминосоединений определяют содержание каждого из анализируемых соединений в пробе. [c.313]

    Исходя из данных хроматографического анализа, в отходящих водных растворах осталось (в вес. % от исходного) муравьиной кислоты — 2,48, уксусной — 4,65, пропионовой — 16,5 и масляной — 17,4. Количество нензвлеченных кислот С]—С4 составляет 6,15%. Выход метнлформиата равен (% вес. от теоретического) 95 метил-ацетата — 93,9 метилпропионата — 78 и метилбутирата — 66,8. Жировой слой представляет собой в основном смесь кислот и эфиров. [c.132]

    В настоящее время одшми из перспективных методов анализа является газовая хроматография, которая позволяет проводить анализ многих неорганических веществ в самых различных смесях и агрегатных состояниях, имеющих температуры кипения от -150 до +200"С[ 3, 4]. Однако хроматографический анализ сероводорода, цианистого водорода, диоксида углерода и аммиака, особенно их водных растворов, является сложной задачей, поскольку разделяемые вещества имеют различный характер и обладают высокой реакционной способностью. Кроме того, преобладающее содержание воды в анализируемых пробах затрудняет определение некоторых компонентов, в частности аммиака, который при использовании большинства сорбентов плохо отделяется от воды. [c.61]

    Изучена принципиальная возможность хроматографического анализа на полимерных сорбентах реакционноспособных неорганических вешеств СО,, H,S, H N и NHj как в водных растворах, так и в газовой фазе. Найдены оптималы1ые условия анализа и на искусственных смесях проведена калибровка прибора в необходимом интервале концентраций определяемых компонентов. Продолжительность [c.71]

    Источником формальдегида может быть или формалин (т. е. 40%-ный водный раствор формальдегида), или различные полимерные формы, например параформальдегид. Для оценки реакционной способности грвдроксильных групп целлюлозы при реакции с формальдегидом определялось распределение по составу различно замещенных формальдегидом глюкозных звеньев. Обычно такое распределение можно определить после полной деполимеризации (гидролиза) замещенной целлюлозы и хроматографического разделения различно замещенных моноз. В случае неустойчивых к действию гидролизующих реагентов (кислот) заместителей и их связей применяется другой способ — исчерпывающее метилирование в щелочной среде и только после этого гидролиз и идентификация метилглюкоз. Анализ реакционной способности гидроксильных групп целлюлозы при реакциях ее с формальдегидом и другими соединениями показал [275], что продукты реакции целлюлозы с формальдегидом в паровой фазе в присутствии катализатора — борной кислоты содержат связи между 2—О и 2 —О, 2—О и З —О положениями в ангидроглюкозных звеньях соседних молекулярных цепей. При исследовании сшитого подобным же образом хлопка с помощью газовой и тонкослойной хроматографии и электрофореза было найдено приблизительно эквивалентное количество [c.191]

    I риметиламина и метиловых эфиров жирных кислот. Последние переносятся газом-носителем в хроматографическую колонку и разделяются. Преимущества метода заключаются в быстроте, в отсутствии при проведении анализа потерь летучих жирных кислот, а также в возможности работы с водными растворами [362, 363 ]. Смесь насыщенных и ненасыщенных жирных кислот переводят в их тетраметилам-мониевые соли следующим образом [363 ]. Исходную навеску около [c.164]

    Ниже описан метод газо-жидкостного хроматографического анализа линейных кислот j- в виде их ге-фенилфенациловых и п-бромфенациловых эфиров, которые легко получить количественно в водных растворах [510]. [c.277]

    Опубликованы данные [107] по хроматографическому качественному анализу найлонов 66, 6 и 11. Образец гидролизовали серной кислотой с образованием твердой фракции, состоявшей из адипиновой кислоты и сульфата аминоундекановой кислоты, и жидкой фракции, состоявшей из сульфатов гексаметилендиамина и аминокапроновой кислоты. Твердую фракцию растворяли в 98%-ной муравьиной кислоте и хроматографировали на бумаге ватман № 1. Жидкую фракцию пропускали через анионообменную смолу и проявляли смесью пропилового спирта, концентрированного водного раствора аммиака и воды (6 3 1). Бумажные хроматограммы сушили на воздухе, прогревали 15 мин при 105° и обрызгивали нингидрином для проявления аминов и смесью анилина и ксилола для определения кислых продуктов. [c.336]

    Для анализа и исследования кислородных органических соединений разработаны многочисленные методы. Значительная часть их заняла прочное место в аналитической практике. Общий недостаток методов- -трудность выделения из сложных кислородных смесей соединений с заданными функциональными группами. Наиболее распространен метод хроматографического отделения всей суммы кислородных соединений из углеводородной среды. Р1звестны методы извлечения кислородных соединений экстракцией, например, водными растворами пирокатехина и резорцина [152]. Эти фенолы образуют со спиртами, кетонами и сложными эфирами молекулярные соединения, не разлагающиеся водой и углеводородами. Кислородные соединения на 90% извлекаются Т1з экстракта перегонкой. [c.141]

    Разработка хроматографического анализа конкретных смесей является обычно трудоемкой задачей, особенно в случае полярных соединений, дающих часто несимметричные пики. Поэтому в ряде случаев может оказаться целесообразным превращение полярных компонентов анализируемой смеси в неполярные соединения, для которых времена удерживания известны. Так, Ф. Драверт [14] рекомендует определять полярные спирты в водных растворах в форме соответствующих неполярных продуктов олефинов, парафинов, азотистокислых эфиров, в которые превращаются спирты в специальном реакторе, расположенном перед хроматографической колонкой. [c.11]

    Ф. Драверт с сотр. [22, 31, 32] разработал метод анализа спиртов в разбавленных водных растворах в форме эфиров азотистой кислоты. Образование эфиров происходило в потоке газа-носителя в реакторе (длина 8—12 см, диаметр Омм), расположенном перед хроматографической колонкой. Реактор был заполнен стерхамо-лом, пропитанным азотистокислым натрием (1 1). Эфиры азотистой кислоты образовывались при 160—200° С. Процесс образования эфиров улучшается и проходит количест- [c.64]

    Так, например, в работе [41] был развит метод, основанный на превращении воды в ацетилен в специальном реакторе с карбидом кальция, расположенном перед хроматографической колонкой. Конверсию воды в ацетилен проводили при 220° С в реакторе из пирекса (30 X X 1,8 см), заполненном смесью карбида кальция (30 меш) и стеклянных шариков (диаметр 0,5 мм), в отношении 1 2. Метод был применен для анализа водных растворов альдегидов, эфиров и спиртов. Органические кислоты удерн-сиваются в реакторе, и поэтому такой метод не может быть применен для их определения. [c.69]

    На рис. 14 приведены две хроматограммы анализа водных растворов спиртов с реактором (а) и без реактора (б). Хроматографическое разделение проводили при 74° С на колонке (250 X 0,7 см) с полярной фазой Исоп 50НВ-200. Как видно, применение реактора с карбидом кальция позволяет, например, анализировать такие спирты, как 2-метил-1-пропанол, 1-бутанол, анализ которых без конверсии воды невозможен. [c.69]

    Наряду с групповыми реагентами в ряде случаев целесообразно использовать специфические реагенты, взаимодействующие с одним-двумя компонентами. Например, для поглощения воды, мешающей хроматографическому анализу многих соединений, применяют такие реагенты, как ангидрон, хлористый кальций, пятиокись фосфора и др. (а также молекулярные сита). Так, нри анализе водных растворов углеводородов и З-бром-1,1,2,2-тетрафторпропана [66] перед хроматографической колонкой включали реактор (452 X 0,6 СЛ1) со смесью фосфорного ангидрида и огнеупорного кирпича (весовое отношение 9 1, фракция кирпича 60—80 меш). После поглощения воды хроматографическое разделение проводили на колонке (294 X 0,6 см), заполненной 20% силикона ДС-710 на огнеупорном кирпиче. Одна набивка реактора может быть использована для анализа 50 проб по 0,1 мл каждая. Метод применен для определения следов 3-бром- [c.83]

    Свобода [31] применил метод полуобратной продувки для анализа низкомолекулярных спиртов в водных растворах. После введения пробы газовый поток проходит последовательно через реактор с диглицеролом (20%) и через хроматографическую колонку с полиэтиленгликолем 400 (10%). Затем, когда зона воды находится в предварительной колонке (реакторе), а определяемые примесные компоненты поступили в основную колонку, переключают газовые потоки так, что направление потока в реакторе изменяется на обратное, а в хроматографической колонке не изменяется. Ограничением этого простого и эффективного метода отделения примесей от основного компонента является невозможность его применения для анализа примесей той же химической природы и реакционной способности, что и основное вещество. [c.220]

    Разделение примеси и основного компонента можно существенно улучшить, если конвертировать основной компонент в легколетучее соединение, характеризующееся незначительным удерживанием. Разработан метод, основанный на превращении воды в ацетилен в специальном реакторе с карбидом кальция, который располо-л<ен перед хроматографической колонкой [10]. Конверсию воды в ацетилен проводят при 220°С в реакторе из пирекса (30X1,8 см), заполненном смесью карбида кальция (0,6 мм) и стеклянных шариков (диаметр 0,5 мм) в отношении I 2. Метод был успешно применен для анализа водных растворов альдегидов, эфиров и спиртов. Органические кислоты удерживаются в реакторе, и поэтому такой метод не может быть применен для их анализа. Хроматографическое разделение проводят при 74 °С на колонке (250X0,7 см) с полярной фазой Укон 50НВ-200, для детектирования используют катарометр. [c.226]


Смотреть страницы где упоминается термин Анализ хроматографический водных растворов: [c.322]    [c.127]    [c.418]    [c.697]    [c.69]    [c.71]    [c.153]   
Курс газовой хроматографии (1967) -- [ c.211 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ хроматографический

Растворы анализ



© 2024 chem21.info Реклама на сайте