Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Компрессоры аммиачных холодильных машин

    Регулирование температур конденсации и переохлаждения холодильного агента возможно только в ограниченных пределах за счет усиления или сокращения притока охлаждающей воды. Температура паров после их сжатия компрессором зависит от температур кипения и конденсации. Понижение температуры кипения и повышение температуры конденсации паров вызывает соответствующее повышение температуры сжатых паров. При температурах кипения ниже —25 С и температурах конденсации выше -)-30° С температура перегрева сжатых паров аммиака превышает + 130° С, что создает затруднения в смазке цилиндров компрессора. Поэтому для аммиачных холодильных машин их температурный режим в испарителе и конденсаторе ограничивается температурой перегрева паров после их сжатия (табл. 117). [c.243]


    КОМПРЕССОРЫ АММИАЧНЫХ ХОЛОДИЛЬНЫХ МАШИН [c.24]

    В связи с этим на практике применяют так называемый сухой процесс, т. е. компрессор засасывает сухие насыщенные или даже слегка перегретые пары, вследствие чего в конце адиабатического сжатия пары получаются перегретыми. Лишь иногда для снижения конечной температуры сжатия (во избежание разложения аммиака в аммиачных холодильных машинах) допускают засасывание компрессором слегка влажных или специально увлажненных паров. [c.651]

    Эксплуатация воздушных конденсаторов совместно с компрессорами в аммиачных холодильных машинах [c.123]

    В зависимости от условий применения масла для компрессоров холодильных машин условно подразделяют на два класса класс А — масла для аммиачных холодильных машин и класс Б — масла для машин, работающих на галогенопроизводных углеводородах. В свою очередь, в зависимости от температурных условий работы и типа применяемых фреонов масла, относящиеся к классу Б, подразделяют на 4 группы. [c.268]

    Некоторое количество газа засасывается (точка 1) в компрессор низкого давления Кх, сжимается в нем изотермически от давления р до давления (изотерма 1—2), В точке 2 к свежему газу присоединяется отработанная часть газа от предыдущего цикла, Газовая смесь с давлением ра сжимается в компрессоре высокого давления Kz до давления рз (изотерма 2—3), затем охлаждается в противоточном теплообменнике Ti отработанным газом предыдущего цикла (до точки 4 по изобаре 3—4). Далее ras охлаждается при помощи аммиачной холодильной машины X (изобара 4—5). После этого газ вновь охлаждается в теплообменнике Т отработанной порцией газа предыдущего цикла по изобаре 5—6. Все дальнейшее течение процесса в точности следует описанному выше регенеративному циклу с циркуляцией газа под давлением. [c.713]

    Пример. Произвести тепловой расчет аммиачной холодильной машины холодопроизводительностью ро=ЮООО ккал/ч при следующих условиях работы температура кипения о= —15°С температура конденсации /к=25°С температура переохлаждения /п=20°С компрессор всасывает сухой насыщенный пар. [c.36]

    Температура всасываемого в компрессор пара рабочего тела. Как показано в главе VI, эта температура является независимым параметром и, следовательно, несамоустанавливающимся. Она устанавливается и поддерживается изменением подачи рабочего тела в испарительную систему. Для аммиачных холодильных машин оптимальным является перегрев всасываемого пара по отношению к температуре кипения на 5—10° С, поскольку при этих значениях перегрева обеспечивается сухой ход компрессора и ему соответствует максимальное значение коэффициента подачи компрессора значение перегрева для фреоновых машин может быть несколько больше (20—30° С), поскольку коэффициент подачи в этом случае с увеличением перегрева продолжает расти. [c.494]


    Маслоотделители устанавливаются в аммиачных холодильных машинах и предназначены для отделения масла, увлеченного парами аммиака из компрессора. Отделение масла основано на резком изменении направления движения паров. [c.226]

    На небольших установках иногда предпочитают производить сжижение при атмосферном давлении, чтобы избежать коррозии компрессоров и газовыделения—возможных при неполадках в производстве. В этих случаях газ охлаждают до —10° при помощи аммиачной холодильной машины или простым испарением жидкого аммиака, если есть потребность в газообразном аммиаке (например, при использовании аммиачно-кислотных методов). [c.169]

    Имеет некоторое значение и то, что в соответствии с Правилами Регистра СССР аммиачные холодильные машины должны устанавливаться в отдельных газонепроницаемых помещениях с двумя выходами, один из которых должен быть непосредственно на открытую палубу. В машинном отделении и помещениях, где расположено технологическое оборудование, в котором используется аммиак, на случай прорыва аммиака из системы или пожара Предусматриваются устройства водяного орошения и водяные завесы у выходов. В то же время хладоновое холодильное оборудование может устанавливаться как в отдельных помещениях, так и в помещениях, общих с силовыми установками и технологическим оборудованием. При использовании винтовых хладоновых компрессоров, имеющих автоматическое изменение холодильной мощности в широком интервале, разрешается комплексно автоматизированную холодильную установку эксплуатировать без обслуживания в течение 16 ч в сутки, что не допускается в случае работы на аммиаке. [c.404]

    Отдельное исполнение цилиндров (2—8) позволяет объединить в одной машине сжатие различных газов или паров, например в каскадном цикле, в производстве сухого льда с использованием аммиачной холодильной машины и пр. Этот принцип объединения нескольких самостоятельных компрессоров широко применяется в газовых компрессорах. [c.90]

    Температура всасывания. Перегрев пара, всасываемого в компрессор А<всас, т. е. разность температур всасывания и кипения, является независимым и, следовательно, само-устанавливающимся параметром. Для аммиачных холодильных машин оптимальным является перегрев всасываемого пара по отно- [c.57]

    Пример. Произвести тепловой расчет двухступенчатой аммиачной холодильной машины с бескрейцкопфным компрессором, если Qo = [c.123]

    Установка КТ-3600Ар работает по схеме двух давлений (рис. 37) с использованием аммиачной холодильной машины для охлаждения воздуха высокого давления и с включением поршневого детандера при получении аргона. Воздух, пройдя фильтр, сжимается в турбокомпрессоре 1 до 6—7 ата и делится на два потока. Основной поток направляется в кислородные 5 и азотные 6 регенераторы, где охлаждается и очищается от влаги и двуокиси углерода. Затем этот поток воздуха поступает 3 нижнюю ректификационную колонну 10 основного воздухоразделительного аппарата. Второй поток после очистки от двуокиси углерода в скрубберах 4 дожимается в поршневом компрессоре 3 до давления 160—180 кГ/сж и поступает на охлаждение в предварительный и аммиачный теплообменники. Далее примерно половина воздуха высокого давления расширяется в поршневом детандере 2 до давления около 6,2 ата, проходит через фильтр детандерного воздуха и вместе с воздухом низкого давления поступает в нижнюю колонну. Вторая половина воздуха разделяется на две части и, охладившись в азотном теплообменнике 7 и теплообменнике сырого аргона 8, дросселируется также в нижнюю колонну, где происходит предварительное разделение воздуха на обогащенный кислородом воздух (кубовая жидкость) и азот. [c.96]

    Схемы трубопроводов холодильного агента по компрессорному цеху не зависят от способов питания батарей жидким холодильным агентом. На рис. 154 показана схема трубопроводов одноступенчатой аммиачной холодильной машины по машинному отделению. Пар, отсасываемый из испарительных систем, сжимается компрессором 1 и через обратный клапан 2 поступает в барботажный маслоотделитель 3. На всасывающем и нагнетательном трубопроводах компрессора установлены термометры 4 и манометры на нагнетательном трубопроводе установлено реле температуры 5 для контроля температуры пара, нагнетаемого компрессором давление всасывания и давление нагнетания контролируется реле давления 6 давление в системе смазки компрессора контролируется с помощью реле контроля смазки 7, сильфон ы которого присоединены к напорной линии масляного насоса 8 и картеру компрессора. Для пуска компрессора служит соленоидный вентиль 9, по окончании пуска он закрывается. Охлаждающая вода в рубашку компрессора подается через соленоидный вентиль 10, контролирует проток воды в рубашке компрессора — реле протока воды И, установленное на линии свободного слива воды. В маслоотделителе от пара отделяется масло и перепускается в маслосборник 12, а пар поступает в конденсатор 13. Сконденсированный холодильный агент сливается в ресивер 14, а оттуда ч рез переохладитель 15 направляется в коллектор регулирующей станции 16. Уровень жидкого холодильного агента в ресивере контролируется реле уровня ПРУ-4. Воздух из системы выпускается через воздухоотделитель 17. Заполняется система аммиаком через вентиль 18. [c.264]


    Многоступенчатые холодильные машины. При низких температурах испарения или высоких температурах конденсации степень сжатия (отношение Рк/Ро) паров хладоагента в компрессоре становится значительной, что приводит к резкому снижению коэффициента подачи. Аммиачные холодильные машины удовлетворительно работают при степени сжатия не свыше 8—9. При больших степенях сжатия переходят к двух- и трехступен чатым холодильным машинам. [c.537]

    Отмеченные особенности приводят к тому, что холодильная машина с одним и тем же компрессором и постоянным Уд дает при разных температурах / и неодинаковую холодопроизводительность . На рис. 61 показан характер изменения Qo в зависимости от при работе фреоновых и аммиачных холодильных машин. Коэффициент подачи X зависит также от конструкции компрессора и величины мертвого объема. Для заданного компрессора или ряда машин одинаковой конструкции можно считать, что X зависит только от температурного режима холодильного цикла. Тогда из формулы (V—6 следует, что холодопроизводительность машин, осуществляющих один и тот же термодинамический цикл в одинаковых температурных условиях, будет прямо пропорциональна объему 1/ , описанному поршнем компрессора. Основываясь на этом, можно, условившись заранее об одном фиксированном цикле с определенными значениями температур кипения, конденсации и перед регулирующим вентилем, по величине У, судить о холодопроизводительности машины. [c.178]

Рис. 17. Расчетные значении для аммиачных холодильных машин с прямоточными компрессорами - двухступенчатые ---одноступенчатые ----- теоретическое значение Рис. 17. <a href="/info/579309">Расчетные значении</a> для <a href="/info/95027">аммиачных холодильных машин</a> с <a href="/info/1449606">прямоточными компрессорами</a> - двухступенчатые ---одноступенчатые ----- теоретическое значение
    Промежуточные сосуды применяют в аммиачных холодильных машинах и установках, работающих по схеме двухступенчатого сжатия для охлаждения пара холодильного агента перед второй ступенью компрессора и переохлаждения жидкости после конденсатора, что позволяет увеличить холодопроизводительность компрессора и снизить расход энер- [c.77]

    Для написания разделов Эксплуатация воздушных конденсаторов совместно с компрессорами в аммиачных холодильных машинах и Эксплуатация воздушных конденсаторов совместно с паровыми турбинами в силовых установках (глава VI) был привлечен инженер Ю. И. Огладков. [c.5]

    В аммиачных холодильных машинах нецелесообразно применять внутренний теплообмен, а в машинах, работающих на фреоне-12, его широко практикуют, так как он экономически выгоден-Третьей особенностью цикла паровой холодильной машины, отлйтаГО1цёй его от цикла Карно, является засасывание компрессором сухого насыщенного или перегретого пара, что обеспечивает сухой ход компрессора. [c.18]

    Одноступенчатые агрегаты с поршневыми ко м-п р е с с о р а м и А-110-7-04-7-3 А220-7-0- 7-3 (рис. 69) предназначены для работы в составе стационарных аммиачных холодильных машин и установок. Условные обозначения агрегатов, например А220-7-0Ч-7-3, следующие А — агрегат компрессорный одноступенчатый 220 — холодопроизводительность компрессора, тыс. ккал/ч 7 — аммиак Оч-З — исполнение по температурному диапазону работы и наличию ступенчатого или плавного регулирования холодопроизводительности. [c.91]

    Пример 2. Произвести тепловой расчет аммиачной холодильной машины с вертикальным компрессором холодопроизводительностью Qo = 10000 ккалЫас при следующих условиях работы температура кипения / = —15° температура конденсации = 25° температура переохлаждения / = 20° компрессор всасывает сухой насыщенный пар. [c.29]

    Компрессоры с вращающимся ротором РАБ100, РАБ150 и РАБЗОО предназначены для работы в системах двух- и многоступенчатых аммиачных холодильных машин в интервале температур кипения жидкого холодильного агента от —65 до —25° С. Цилиндр и торцевые крышки (рис. 48) литые чугунные, с водяными рубашками системы охлаждения. Ротор стальной, с пазами для восьми пластин. Пластины изготовлены из асботекстолита. Ротор установлен на подшипниках качения роликовых, радиально-упорных. Вал ротора, выходящий в атмосферу, уплотнен двойным самоустанавливающимся пружинным сальником. Смазка подшипников и лопастей осуществляется от лубрикатора. Сальник смазывается из бачка. Для охлаждения сальника сделана водяная рубашка в корпусе сальника. Каждый из компрессоров выпускается четырех модификаций. Ротационные компрессоры с катящимся ротором изготовляют в двух исполнениях сальниковые РФ-1,1 и герметичные ФГр-0,35 1 и ФГр-0,7 3. [c.90]

    Компрессоры ТКА-335 и ТКА-735 предназначены для работы в системах крупных аммиачных холодильных машин, компрессоры ТКФ-125, ТКФ-235М, ТКФ-248 и ТКФ-348 —для работы в системах [c.94]

    Углекислый газ, сжатый в ЦНД 1 до Ризб=0,684-0,78 Мн1м = = 74-8 ат (процесс 1—2 диаграммы i — Igp (рис. 184, в) последовательно проходит промежуточный охладитель 2, маслоотделитель 3, осущительную колонку 4 и поступает в ЦВД 5, где сжимается до ризб= 1,574-1,95 Мн/л12= 16-i-20 ат (процесс 3—4) и, пройдя очистку от масла и осушение в промежуточном охладителе 5, маслоотделителе 7, силикагелевом фильтре 8 и осушителе 9, поступает в углекислотный конденсатор 10, который служит одновременно испарителем аммиачной холодильной машины (процесс конденсации 4—5). Сжиженная углекислота собирается в ресивере 11 и направляется в регулирующий вентиль, в котором дросселируется до ризб=0,68- -0,78 Мн1м =7—8 ат с понижением t= (—404-—45)°С (процесс 5—6). Полученная парожидкостная смесь поступает через воздухоотделитель 12 в промежуточный сосуд 13, из которого пар отсасывается компрессором второй ступени 5, к жидкость поступает в льдогенераторы 14 (процесс понижения давления в льдогенераторе 7—9). Газ, образующийся в льдогенераторе, отсасывается ЦНД 1. В таких схемах применяется углекислотно-аммиачный компрессор 2УАГ. Вертикально на базе установлены два углекислотных цилиндра простого действия, сжимающих углекислый газ в две ступени. Горизонтально установлены два таких же [c.343]

    Двух- и трехступенчатые аммиачные холодильные машины, которые производились до Великой Отечественной войны нашими заводами, снабжались горизонтальными компрессорами ШАГ, НАГ и 14АГ с дифференциальными поршнями или собирались из отдельных одноступенчатых горизонтальных компрессоров типа 7АГ и 15АГ. [c.224]


Смотреть страницы где упоминается термин Компрессоры аммиачных холодильных машин: [c.300]    [c.315]    [c.197]    [c.53]    [c.576]    [c.666]    [c.94]    [c.86]    [c.391]    [c.249]    [c.259]    [c.537]   
Смотреть главы в:

Пособие для машинистов холодильных установок -> Компрессоры аммиачных холодильных машин




ПОИСК





Смотрите так же термины и статьи:

Холодильная машина



© 2024 chem21.info Реклама на сайте