Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсаторы воздушного охлаждения

Рис. 18. Схема конденсатора воздушного охлаждения типа АВГ Рис. 18. Схема <a href="/info/147946">конденсатора воздушного охлаждения</a> типа АВГ

Рис. 5. Принципиальная схема блока вакуумной пере.-онки — вакуумная колонна Г-35 — поверхностный конденсатор БК — барометрический колодец Т-1, Т-3. Т-4, Т-16, Т-18, Т-25, 7-И — теплообменники 7 -25а — конденсатор воздушного охлаждения Т-24, Т-28, Т-30, 7-Д/— холодильники Э-/— пароэжекторный вакуумный насос Н — насосы Е — емкости П-3 — трубчатая печь. Рис. 5. <a href="/info/24285">Принципиальная схема</a> <a href="/info/980375">блока вакуумной</a> пере.-онки — <a href="/info/62935">вакуумная колонна</a> Г-35 — <a href="/info/94243">поверхностный конденсатор</a> БК — барометрический колодец Т-1, Т-3. Т-4, Т-16, Т-18, Т-25, 7-И — теплообменники 7 -25а — <a href="/info/147946">конденсатор воздушного охлаждения</a> Т-24, Т-28, Т-30, 7-Д/— холодильники Э-/— пароэжекторный <a href="/info/16676">вакуумный насос</a> Н — насосы Е — емкости П-3 — трубчатая печь.
Рис. 154. Схема конденсатора воздушного охлаждения Рис. 154. <a href="/info/863016">Схема конденсатора</a> воздушного охлаждения
    Риг. Я.5. Конденсатор воздушного охлаждения. [c.158]

    Стоимость конденсаторов воздушного охлаждения (типа АВЗ по ГОСТ 13934—68) находится по прейскуранту № 23—03, а стоимость насосного оборудования с учетом электродвигателей находится в зависимости от их мощности по уравнению  [c.103]

    В результате аварии и пожара вышли из строя насосы и конденсаторы воздушного охлаждения с электродвигателями, деформировались и разрушились технологические трубопроводы и металлоконструкции, обгорели трассы КИПнА, силовая и осветительная электропроводка. [c.100]

    Трубный пучок в конденсаторах воздушного охлаждения имеет прямоугольную форму и состоит из 3—6 рядов труб, размещенных по треугольнику. Длина труб от 1,2 до 9 м. Трубы развальцовываются в коллекторе. [c.127]

    С-/— предварительный испаритель К-2— основная ректификационная колонна К-6, К-7. К-Р — отпарные колонны /, -/2 -3 — емкости орошения- Т-5. Т-7. Т 22. Г-23 — конденсаторы воздушного охлаждения Г-2. Г-33. Г-/7, Т-19. Г-Л — теплообменники нефть — отходящие нефтепродукты Т-5а. Г-Та. Т-22а. — холодильники. Я-/— трубчатая печь И-З-Н-21 — насосы. [c.20]

    Опыт эксплуатации конденсаторов воздушного охлаждения в условиях крупнотоннажных производств показывает, что прн одном и группе АВО, предназначенных для совместной эксплуатации с турбинами, паровая нагрузка аппаратов неодинакова. Например, в условиях Невинномысского производственного объединения Азот четыре компрессорных установки, несмотря на примерно одинаковые коэффициенты теплопередачи, обеспечивают расчетные параметры конденсации Рк и при t = 22—29 °С (табл. VT-3). При этом значение теплового потока колеблется в пределах 12,3—45,7 МВт. Объединение выхлопных коллекторов в дополнительные трубопроводы позволит перераспределить паровую нагрузку между АВО и повысить их эффективность. [c.141]


    Фракция 85—105 °С с верха колонны, К-5 поступает в воздушный конденсатор T-W, а затем после конденсации и охлаждения — в рефлюксную емкость Е-6. Часть фракции из емкости Е-6 направляется на орошение верха колонны К-5 через клапан-регулятор расхода с коррекцией по температуре верха колонны, другая часть отводится через конденсатор воздушного охлаждения с установки. Уровень в емкости Е-6 поддерживается приборами, установленными на линии сброса фракции 85—105°С в парк. Колонна К-5 оборудована отпарной колонной К-11 и кипятильником Т-18. Фракция 105— 140 °С из колонны К-5 отводится в отпарную колонну К-11, где отпариваются легкокипящие фракции, которые возвращаются в колонну К-5. Освобожденная от легкокипящих примесей фракция 105—140 °С из кипятильника Т-18 направляется через конденсатор воздушного охлаждения и водяной холодильник в емкости парка. Для поддержания температуры низа колонны К-11 через кипятильник Т-18 поступает циркулирующая флегма, которая забирается насосом Н-12 с низа колонны К-5, прокачивается через змеевики печи n-2 2 и возвращается в низ колонны К-5, а часть циркуляционной флегмы как теплоноситель проходит через Т-18 и возвращается в колонну. С низа колонны К-5 забирается фракция 140 С — к. к., которая после охлаждения в теплообменниках направляется или на каталитический риформинг, или на блок очистки. [c.28]

    На высокопроизводительных установках для сокращения объемов потребляемой воды широкое распространение получили конденсаторы воздушного охлаждения. Конденсаторы воздушного охлаждения удобны в эксплуатации, очистка и ремонт их не требуют больших трудовых затрат. Загрязнения наружной поверхности конденсаторов воздухом почти не наблюдается даже в условиях обдувки их запыленным воздухом и при большом количестве ребер. Внедрение конденсаторов также важно с точки зрения резкого уменьшения сброса загрязненных сточных вод в реки и водоемы, сокращения потерь нефтепродуктов. [c.54]

    Основные технические характеристики конденсаторов воздушного охлаждения, эксплуатируемых на высокопроизводительных установках, даны в Приложении 4. [c.54]

    Условные обозначения. В соответствии с ГОСТами и нормалями конденсаторы воздушного охлаждения в за- [c.54]

    Температуру нефтепродуктов, отходящих с установки, регулируют как открытием — закрытием жалюзей на конденсаторах воздушного охлаждения, так и подачей [c.79]

    Внедрение конденсаторов воздушного охлаждения в комбинации с водяным доохлаждением позволяет снизить конечные температуры бензинов, отходящих с установок, до 30—35 °С, ЧТО резко сокращает потери ценных углеводородов (по подсчетам, в 1,4—2 раза по сравнению с тем, когда отходящие бензины выводились при температуре 40—45 °С). [c.81]

    Конденсатор воздушного охлаждения изображен на рис. 95. Трубные секции конденсатора расположены в виде шатра, в основании [которого находится вентилятор 2, приводимый во враш,ение электро- ц. игятолом ]. Для направления воздуха в межтрубное пространствь [c.158]

    Даже 1% инертных примесей снижает коэффициент теплоотдачи авн почти на 50%- Если в водяных конденсаторах уменьшение Овн на 50—60% значительно влияет на среднее значение коэффициента теплопередачи, то в АВО это влияние заметно меньше, так как при авн > 2500—3700 Вт/(м2-К) коэффициент теплопередачи Кф почти полностью определяется значением а . Таким образом, без учета 50%-ного снижения авн имеем авн = 5000—7400 Вт/(м2-К), что соответствует общепринятым значениям коэффициентов теплопередачи при конденсации чистых насыш,енных водяных паров. Поэтому можно сделать весьма важный практический вывод в конденсаторах воздушного охлаждения присутствие неконденсирующихся примесей оказывает значительно меньшее влияние на коэффициент теплопередачи, чем в конденсаторах, охлаждаемых водой. Однако влияние примесей тем не менее следует учитывать, так как по мере выделения влаги парциальное давление инертов постоянно увеличивается, что может привести к авн < 2500— —3700 Вт/(м2-К). [c.136]

Рис. У1 26. Конденсатор воздушного охлаждения (АВГ) Рис. У1 26. Конденсатор воздушного охлаждения (АВГ)
    При разработке системы дополнительных трубопроводов необходимо стремиться к возможно большим проходным сечениям. Диаметры дополнительных трубопроводов должны быть не менее Dy = 350—400 мм или могут быть рассчитаны по объемному расходу пара через дополнительный трубопровод AQv/r (г — удельная теплота парообразования v — удельный объем пара). В заключение следует подчеркнуть, что АВО могут успешно применяться в качестве конденсаторов отработавшего пара конденсационных паровых турбин. Применение конденсаторов воздушного охлаждения позволяет уменьшить эксплуатационные затраты они легко поддаются регулированию, практически полностью автономны и их эксплуатационные показатели не зависят от работы смежного оборудования. [c.143]


    С верха колонны 6 газ, пары бензина и водяные пары через конденсатор воздушного охлаждения 7, водяной холодильник 8 с температурой 40 °С отводят для разделения в газосепаратор 9. Воду из нижней части газосепаратора выводят в емкость 12, откуда насосом 14 подают как турбулизатор потоков печей 31 и 32, предварительно нагрев ее в теплообменнике 29 до 150 °С горячим легким газойлем. Из нижней части колонны 6 парообразные продукты коксования поступают в ее верхнюю часть, оборудованную тринадцатью тарелками с 5-образными элементами и двадцатью клапанными. С первой и третьей 5-образных тарелок колонны 6 выводят тяжелый газойль в нижнюю отпарную колонну 10 с шестью тарелками с 5-образными элементами, с четырнадцатой—шестнадцатой клапанных тарелок колонны 6 [c.97]

    В условиях жаркого климата для улучшения коэффициента теплопередачи воздух перед входом в трубныб пучки должен увлажняться, а в случае внезапной остановки электродвигателя автоматически осуществляется подача воды на орошение в маточник тогда конденсаторы воздушного охлаждения работают как оросительные тенло-обменные аппараты. Наибольшая эффективность работы достигается при использовании конденсаторов воздушного охлаждения для съема основной части тепла и погружных холодильников для доохлаж-дения. [c.127]

    К пространственному оборудованию относятся резервуары, газгольдеры, трубчатые печи, конденсаторы-холодильники погружного типа, конденсаторы воздушного охлаждения, различные металлоконструкции. Оборудование этой группы поставляют на строительную площадку в виде более или менее крупных узлов, которые затем собирают на площадке в монтажные блоки. Это оборудование целесообразно устанавливать самоходными стреловыми кранами. В некоторых случаях можно применять мачты, стрелы илп другое грузоподъемное оборудование. [c.11]

Рис. ХХП-24. Парциальный конденсатор воздушного охлаждения фирмы СЕ4 Рис. ХХП-24. Парциальный <a href="/info/147946">конденсатор воздушного охлаждения</a> фирмы СЕ4
    Регулирование режима работы конденсаторов воздушного охлаждения можно легко автоматизировать. Это не только экономически выгодно, но и создает благоприятные условия для безопасного ведения процесса на технологической установке. Обслуживание конденсатора заключается в основном в уходе за приводным механизмом вентилятора. Для предохранения от повреждения лопастей, поверхностей оребренных труб секций и для зашиты эксплуатационного персонала в нижней части воздушного коллектора устанавливают предохранительную плетеную сетку, за целостностью которой нужно постоянно следить. [c.197]

    Внедрение холодильников-конденсаторов воздушного охлаждения привело к снижению расхода воды и электроэнергии, сокращению вредных стоков и затрат на их очистку. Значительную экономию дает замена водяного охлаждения воздушным. [c.65]

    Крышки таких секций снабжены перегородками, которые делят трубчатый пучок иа отдельные ходы. В конденсаторах воздушного охлаждения, где конденси[)уется охлаждаемая с[)еда и объем ее уменьшается по ходу движения, число труб уменьшают последовательно по ходам. Для предотвращения взаимного смещения труб в пучке между ипмп предусмотрены дистаиционные прокладки из л, помппп(мюп лепты шириной 15 мм. Такие секции выиускгиот на условное давление от 0,6 до 6,4 МПа. [c.193]

    Типичная схема обезвреживания газовых выбросов (фирмы Ameri an Oil) предста влена на рис. 97. Газы из окислительных аппаратов проходят сепаратор, скруббер и затем сжигаются в печи, в которую подается топливный газ [269]. До сепаратора газы охлаждаются в трубопроводе или в конденсаторе воздушного охлаждения [93]. Во избежание обратного проскока пламени в газовый тракт перед печью постоя нно вводят небольшое количество водяного пара [260]. Газы должны пребывать в зоне температур не ниже 600 °С [265] или 650 °С [269] не. менее 0,3 с [265, 269], чтобы органические вещества сгорели полностью. [c.171]

    ИЛИ охлаждаемый поток нефтепродукта. Через этот пучок вентилятором пропускается воздух. Для компенсации низкого коэффициента теплоотдачи, со стороны воздуха применяют оребренпые трубы. В зависимости от скорости воздуха коэффициент теплопередачи колеблется в пределах iO—50 ккал/(м -ч-град). Для снижения начальной температуры предусматривается его увлажнение. На укрупненных технологических установках используют сдвоенные агрегаты. Общий вид конденсаторов воздушного охлаждения приведен на рис. 155. [c.262]

    Коэффициент теплопередачи для конденсаторов воздушного охлаждения колеблется в пределах 10—50 ккалГм ч град. [c.127]

    По каталогу выбираем вентилятор УК-2 ЦАГИ с наружным диаметром колеса d = 2800 мм, который при 425 об/мин подает 330 ООО ж /ч воздуха. В конденсаторах воздушного охлаждения предусмотрен перекрестный ток теплообме-ниваюш ихся потоков, поэтому среднелогарифмическая разность температур будет всегда ниже, чем для противоточной схемы теплообмена. Примем А igp = 0,8 от Д <ср противотока . [c.129]

    С 15-й тарелки вакуумной колонны К-Ю насосом Н-24 забирается верхнее циркуляционное орошение, прокачивается через теплообменники Т-25, конденсатор воздушного охлаждения Т-25а, холодильник Т-28 и с температурой 50 °С направляется на 18-ю тарелку колонны К-Ю. Балансовый избыток фракции ниже 350 С насосом Н-24 направляется в колонну К-2 или в линию дизельного топлива. Предусмотрен возврат горячего орошения с вы-кида насоса Н-24 на 14-ю тарелку вакуумной колонны. [c.32]

    Особенности эксплуатации. Применение двухскоростных электродвигателей позволяет варьировать режим работы конденсаторов воздушного охлаждения в широких пределах. Когда температура воздуха настолько низка, что возникает опасность переохлаждения конденсируемой жидкости, вентилятор прокачивает воздух сверху— для этого предусмотрена возможность реверсиро- [c.56]

    Проверив включение теплообменников и закрытие задвижек на обводных линиях, поднимают производительность установки по сырью и температуры на выходе из печи до указанной в технологической карте, включают конденсатор воздушного охлаждения и конденсаторы-холодильники. Затем отбирают пробы нефтепродуктов, анализ которых необходим для ведения технологического режима. Если результаты анализов соответствуют межцеховым нормам, нефтепродукты выводят в резервуар-ные парки. Вывод нефтепродуктов осуществляют при температурах, соответствующих межцеховым нормам. Только после этого приступают к выводу на режим остальных блоков. По окончании планово-предупредитель-ных ремонтов или после кратковременных остановок установку пускают в том же порядке, как описано выше, но исключают промывку аппаратов установки холодной водой и длительную холодную циркуляцию. После опрес- [c.73]

Рис. -21. Шестирядная секция конденсатора воздушного охлаждения Рис. -21. Шестирядная <a href="/info/930934">секция конденсатора воздушного</a> охлаждения
    Избыточную теплоту колонны 6 снимают промежуточным циркуляционным орошением, имеющ,им температуру 265 °С, которое забирают с десятой тарелки нгсосом 5, прокачивают через теплообменник 4, где оно отдает теплоту сырью, охлаждают до 100 °С в конденсаторе воздушного охлаждения 3 н возвращают обратно в колонну на тринадцатую тарелку. [c.98]

    Интенсификации установок АТ и АВТ способствовало и совершенствование трубчатых печей. До 60-х годов в основном использовались печи шатрового типа - громоздкие, металлоемкие, с низкой тепловой мощностью с к.п.д. 0,74. В 60-е годы стали применять печи беспламенного горения. Они более компактны, малогабаритны, их к.п.д. и теплонапряженность выше. Существенный их недостаток -они работают на газообразном топливе постоянного углеводородного состава. В 70-е годы на высокопроизводительных установках АТ и АВТ начали применять более эффективные печи вертикально-факельного типа и печи с объемнонастильным пламенем. Их к.п.д. достигает 78 -83%, а при использовании подогрева воздуха - до 90%. Необходимо отметить широкое применение конденсаторов воздушного охлаждения, что позволило значительно сократить расход воды на НПЗ. Широко стали применять котлы-утилизаторы дымовых газов, воздухоподогреватели, более рационально утилизировать вторичные энергоресурсы. За последние годы существенно увеличены (до 3 - 4 лет) межремонтные пробеги установок АТ и АВТ, что стало возможным благодаря лучшей подго. шке нефтей и применению ингибиторов коррозии, аммиака, щелочи и соды. [c.43]

    Легкий газойль из верхней отпарной колонны 10 насосом 13 прокачивают через теплообменник 29 для нагрева турбулнзатора, затем через конденсатор воздушного охлаждения 28 и водяной холодильник 27 и выводят с установки. [c.98]

    Балансовое количество тяжелого газойля из нижней отпарной колонны 10 нйсосом 15 прокачивают через теплообменник 17 и кипятильник 24 для нагрева низа стабилизатора 18, а также (с температурой 250 °С) через кипятильник 25, где из деаэрированной химически очищенной воды вырабатывается водяной пар давлением 1,0—1,4 МПа. После охлаждения в конденсаторе воздушного охлаждения 26 до 90 °С тяжелый газойль выводят с установки. [c.98]

    Жирный газ из газосепаратора 9 выводят с установки. Нестабильный бензин насосом 11 подают в качестве острого орошения в колонну 6, а балансовое количество направляется через теплообменник 17, где бензин нагревается тяжелым газойлем до 150 С, в стабилизационную колонну 18. Там при давлении 0,6 МПа происходит дебутанизация бензина. Пары с верха колонны 18 поступают в холодильник 19, оттуда парожидкостная смесь идет в газосепаратор 20, где разделяется на газ стабилизации и реф-люкс (орошение). Газ стгбилизации совместно с жирным газом из газосепаратора 9 выводится с установки. Рефлюкс из газосепаратора 20 насосом 21 подают на орошение колонны 18. Стабильный бензнн из колонны 18 под собственным давлением проходит кипятильник 24, конденсатор воздушного охлаждения 23, холодильник 22 и отводится с установки. [c.98]

    Перед выгрузкой кокса камеры охлаждают вначале до 400 °С водяным паром. Пары направляют в колонну 6. Затем камеры пропаривают, и пары через конденсатор воздушного охлаждения 35 поступают в е>1кость 34, где накапливаются тяжелые парафиновые углеводороды. После эгого кокс в камерах доох-лаждают водой, образующиеся при этом пары подают в водяной смеситель (скруббер) 37. [c.98]

    Оптимизирована степень частичного отбензинивания нефти в ректификационной колонне К-1, исходя из обеспечения доли отгона питания сырьем атмосферной колокны К-2 на уровне суммарного отбора светлых при приемлемых температуре нагрева в печи и давлении перегонки. Усовершенствованная технология частичного отбензинивания нефти предусматривает питание колонны К-1 двумя разными по объему потоками сырья, имеющими после нафева в теплообменниках температуру 165 и 260°С (табл.1). Менее нафетый поток сырья в количестве 1/3 от общего поступает в зону питания, остальное сьфье с более высокой температурой - в низ колонны К-1. Горячая струя в низ колонны К-1 не подается. Одновременно существенно повышается фракционирующая способность колонны К-1 за счет замены всех желобчатых тарелок на современные высокоэффективные контактные устройства, спроектированные с учетом различных нафузок по пару и жидкости, складывающихся в отдельных секциях колонны К-1. Оптимизирован отбор дистиллята колонны К-1. Он принят 7% масс, на нефть, что составляет 40% от содержания фракции нк-180 С в нефти. При этом кратность острого орошения по сравнению с фактической уменьшается с 0,93 1 до 0,37 1, что позволяет существенно сократить энергозатраты на привод вентиляторов конденсаторов воздушного охлаждения паров с верха колонны К-1 и на дополнительный нафев отбензиненной нефти по сравнению с фактической работой установки АВТ-4. [c.37]

    Лншшз задействованного на установках первичной переработки нефти теплотехнического оборудования показывает, что оно имеет широкий спектр конструкций, а именно кожухотрубчатые теплообменники (с и-образными трубка.ми и плавающей головкой), конденсаторы и холодильники гюгружного типа (змеевиковые и секционные), конденсаторы воздушного охлаждения, нагревательные печи и многое другое оборудование. [c.77]

    В качестве охлаждающего агента может быть использован и атмосферный воздух. В последнее время широкое распространение получают конденсаторы воздушного охлаждения, в которых в качестве охлаждающего агента используют воздух, нагнетаемый специальными вентиляторами. Повышенные скорости движения воздуха, омывающего поверхность, и оребрение последней позволяют обеспечить эффективный отвод тепла. Затрата энергии на воздуходувки можот часто оказаться меньше затрат энергии, требуемой для подачи воды. При использовании в качество охлаждающего агента воздуха сокращается расход воды и уменьшаются затраты, связанные с системой водоснабжения, очисткой сточных вод и др. [c.549]

    К-8 - стабнлизацнонная колонна К-3, К-5, К-11 - колонны вторичной перегонки бензина Е-2, Е-4, Е-6 -емкости орошения Т-6, Т-8, Т-10 -конденсаторы воздушного охлаждения, Т-11, Т-18 - теплообменники, Н - насосы П-2/1, П-2/2- трубчатые печи [c.63]


Смотреть страницы где упоминается термин Конденсаторы воздушного охлаждения: [c.55]    [c.157]    [c.71]    [c.96]    [c.176]    [c.355]    [c.119]   
Смотреть главы в:

Перегонка -> Конденсаторы воздушного охлаждения

Основы конструирования аппаратов и машин нефтеперерабатывающих заводов -> Конденсаторы воздушного охлаждения


Холодильные установки (1981) -- [ c.196 ]

Оборудование нефтеперерабатывающих заводов и его эксплуатация Изд2 (1984) -- [ c.178 ]

Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.261 ]

Оборудование нефтеперерабатывающих заводов и его эксплуатация (1966) -- [ c.170 , c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсаторы воздушный

Охлаждение воздушное



© 2025 chem21.info Реклама на сайте