Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сцепление локализация генов на хромосомах

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]


    Сцепление локализация генов на хромосомах [c.191]

    Использование многих тысяч разбросанных по всему геному полиморфных маркеров позволило определять как порядок расположения локусов, так и расстояния между ними на каждой хромосоме. Карта сцепления полиморфных участков оказывается неоценимой при локализации генов различных заболеваний. Для идентификации таких генов можно использовать зонды, специфичные в отношении последовательностей, которые фланкируют данный ген. [c.459]

    Морфологические маркеры хромосом. Пары или кластеры сцепленных аутосомных генов (группы сцепления) невозможно соотнести с конкретными хромосомами на основе использования только формально-ге-нетического анализа родословных. Впервые собственно локализация гена в определенной хромосоме у человека была осуществлена следующим образом [629 855]. [c.198]

    Сравнение генетических и цитологических карт хромосом. Чтобы установить, соответствует ли взаиморасположение генов в группах сцепления, определенное по данным кроссинговера, истинной их локализации в хромосомах, наряду с генетическими картами у дрозофилы были составлены цитологические карты, а затем их сравнили. Для этого использовали различные хромосомные перестройки, главным образом перемещения отдельных участков хромосом (транслокации), возникающие под действием лучей Рентгена. Изучали их сначала на обычных митотических хромосомах, а затем на гигантских хромосомах слюнных лселез. Метод состоит в том, что выпадение какого-либо перемещаемого участка маркированной с помощью кроссинговера хромосомы измеряют как генетически по изменению наследования соответствующих признаков в единицах перекреста, так и непосредственно в нанометрах при наблюдении в микроскоп, а затем составляют сравнительные генетические и цитологические карты хромосом. [c.112]

    Изучение других организмов привело к сходным результатам. При экспериментальном скрещивании разнообразных организмов обнаружилось, что некоторые группы сцепления больше других (т. е. в них входит больше генов). Изучение хромосом этих организмов показало, что они имеют разную длину. Морган доказал наличие четкой связи между этими наблюдениями. Они послужили дальнейшими подтверждениями локализации генов в хромосомах. [c.196]

    Сцепление — совместная передача потомству генов в тех же комбинация. , в каких они были у родительских форм. Связана с локализацией генов в одной хромосоме (группе сцепления). [c.347]

    Генетическая карта, представленная на фиг. 33, почти целиком основана на опытах с плодовой мушкой по образованию групп сцепления и на данных о частоте перекреста между генами, принадлежащими к одной и той же группе сцепления. После того как выяснилось, что облучение рентгеновскими лучами вызывает также и многие изменения в структуре хромосом, эти структурные изменения были использованы частично для окончательного доказательства того, что хромосомы содержат гены, частично же для точной локализации генов в определенных локусах хромосом. [c.221]


    Сцепление — связь между генами, исключающая возможность их независимого наследования. Сцепление бывает обусловлено локализацией генов в одной и той же хромосоме. [c.464]

    После определения группы сцепления, к которой принадлежит исследуемый ген, можно приступить к локализации гена внутри группы сцепления, то есть установить место его в хромосоме. [c.135]

    Внутренний круг со шкалой времени соответствует всей хромосоме. Карта разделена на 1-минутные интервалы, причем за нулевую точку произвольно принят ген thr. Отдельные части карты (например, участок 0 — 2 мин) размещены на дугах внешнего круга с увеличенной в 4 раза шкалой времени для размещения переполненных областей. Значение генетических символов да но в табл. 17. В скобках указаны гены, положение которых установлено приблизительно. Локализация генов, отмеченных звездочками, установлена более точно, чем для генов в скобках, но их порядок относительно других сцепленных генов, отмеченных звездочками, еще не определен. [c.244]

    Из одного F штамма может возникнуть множество различных штаммов Hfr, для каждого из которых характерна собственная локализация и ориентация F-фактора в хромосоме бактерии (рис. 8.8). Это проявляется в описанных выше опытах с прерванной конъюгацией в каждом Hfr-штамме передача бактериальной хромосомы начинается с собственной, иной чем у других штаммов точки различна также и ориентация хромосомы при этом. Для каждого штамма можно установить характер сцепления между генами, расположенными неподалеку от точки, с которой начинается передача бактериальной хромосомы. Совокупность таких данных по множеству различных штаммов Hfr позволяет установить характер сцепления маркеров в хромосоме в целом и построить физическую карту хромосомы Е. соИ. Как показано на рис. 8.9, эта карта имеет форму кольца, что полностью соответствует кольцевой форме бактериальной ДНК. [c.238]

    Степень надежности установленной региональной локализации генов в хромосомах или сцепления между двумя локусами оценивается по четырем градациям  [c.247]

    В строгом смысле группой сцепления называют группу генов, проявляющих сцепленное наследование. Поскольку известно, что такое наследование отражает локализацию генов в одной хромосоме, обычно под группой сцепления понимают группу генов, расположенных в одной хромосоме. [c.102]

    Еще одним этапом развития современной генетики человека явилось картирование и локализация генов в хромосомах человека. Достижения цитогенетики, генетики соматических клеток, увеличение числа генетических маркеров способствовали успешному изучению групп сцепления. В настоящее время у человека установлено 23 группы сцепления. Эти данные нашли непосредственное применение в диагностике наследственных заболеваний и медико-генетическом консультировании. [c.8]

    Ген, ответственный за цветовую слепоту (дальтонизм), был локализован в Х-хромосоме в 1911 году. Особенности наследования генов, сцепленных с Х-хромосомой, позволили отнести к этой группе сцепления более чем 100 локусов. Хромосомная локализация аутосомных генов была впервые проведена в 1968 году. Определено расположение локуса, кодирующего антигены групп крови Даффи, которые, подобно антигенам группы ABO и другим антигенам крови, находятся на поверхности эритроцитов. Сравнение наследования изучаемого гена с распределением аберрантной хромосомы 1 показало, что он локализован в этой хромосоме. С тех пор на основании анализа родословных определены группы сцепления для 70 генов человека. Картирование многих из этих генов стало возможным после того, как было показано их сцепление с другими генами, локализацию которых удалось установить методами генетики соматических клеток. Примером этого служит картирование гена резус-фактора, впервые открытого в 1939 году. В 1971 г. изучение родословных показало, что ген Rh сегрегирует сцепленно с геном РЕРС, кодирующим пептидазу С. Годом позже при изучении соматических клеток ген РЕРС был локализован в хромосоме 1. Таким образом, стала известной группа сцепления и для гена Rh, кодирующего резус-фактор. В настоящее время картировано около 500 аутосомных генов, причем 100 из них картировано за последние 12 месяцев. Подавляющее большинство этих генов локализовано методами генетики соматических клеток. [c.294]

    В отличие от классической, в новой генетике изменился подход к анализу генов. В классической генетике последовательность была следуюшей идентификация менделирующего признака локализация гена в хромосоме (или группе сцепления) первичный продукт гена ген. В современной генетике стал возможным и обратный подход выделение гена секвенирование первичный продукт, в связи с чем был введён новый термин для определения такого направления исследований обратная генетика или генетика наоборот . [c.19]

    Однако в большинстве случаев наследственных заболеваний ген не клонирован или заболевание является генетически гетерогенным, т.е. обусловлено повреждениями в разных генах, либо молекулярная организация гена не позволяет использовать прямые методы. Эти трудности могут быть преодолены с помощью косвенных методов ДНК-диагностики, основанных на использовании сцепленных с геном полиморфных маркёров. В этом случае определяется гаплотип хромосомы, несущей мутантный ген в семьях высокого риска, т.е. у родителей больного и его ближайших родственников. Такой подход возможен практически для всех моногенных заболеваний с известной локализацией гена. [c.264]


    ВОЗМОЖНОСТЬ составить карты локализации известных мутантных генов в хромосомах дрозофилы. Определяя частоту расщепления сцепленных генов среди потомства мух с самыми разнообразными мутациями, Морган и его сотрудники смогли построить генетические карты четырех хромосом дрозофилы (фиг. 12). На этих картах показано положение в хромосомах известных в то время мутантных генов. [c.30]

    Анализ родословных не позволяет установить хромосомную локализацию гена того или иного заболевания, если только этот ген не находится на Х-хромосоме. Однако можно исследовать сцепление между геном данного заболевания и полиморфными ПДРФ- или STRP-локусами, идентифицируя последние с помощью соответствующих зондов. Этот подход дает наилучший результат в том случае, когда заболевание имеет четкие симптомы, его наследование носит однозначный характер и известна степень его пене-трантности. [c.456]

    Пары генов или группы сцепления аутосомных генов невозможно соотнести с конкретными хромосомами, используя только формально-генетический анализ родословных. Для установления конкретной локализации генов использовались морфологические маркеры хромосом. Например, на длинном плече первой хромосомы вблизи центромеры часто обнаруживается вторичная перетяжка. Морфология этой перетяжки бывает различной, а наследуемость определенной морфологии прослеживается в череде поколений. С присутствием слишком тонкой и длинной перетяжки связано наличие некоторых патологий. Анализ родословных в связи с морфологией первой хромосомы выявил группу сцепления из трех локусов врожденной очаговой катаракты, группы крови Даффи и локуса йп — 1. [c.122]

    У млекопитающих наиболее тщательному исследованию была подвергнута Х-хромосома, поскольку ее можно анализировать в гомозиготном и гемизиготном состоянии, т. е. в отсутствие одного из гомологов. У всех изучавшихся высших млекопитающих, а также кенгуру, сцепленными с Х-хромосомой оказались гены GGPD, HPRT, GLA, PGK. Другие группы сцепления в процессе эволюции были перемешаны, хотя между близкородственными видами сохраняются точные гомологии. В табл. 21.1 перечислены гены первой хромосомы человека, для которых определена локализация в хромосомах некоторых других млекопитающих. У крупных человекообразных обезьян и у некоторых других приматов эти гены также локализованы в первой хромосоме, но у зеленой мартышки некоторые из них (а именно присутствующие в коротком плече р первой хромосомы человека) транслоцированы на хромосому 6, тогда как другие (из длинного плеча q) картируются в первой хромосоме. Данные табл. 21.1 указывают на существенные различия в хромосомной организации грызунов и приматов. Этот же вывод еле- [c.57]

    Решение задачи № 271. Признак необычного поведения передается от матери к сыну, что свидетельствует о локализации соответствующего гена в Л-хромо-соме и его рецессивности. У самцов дрозофилы данный ген присутствует в гемизиготном состоянии. Обозначим А -хромосому, несущую рецессивный аллель, как ДГ , а А -хромосому с доминантным аллелем данного гена как Ген, контролирующий окраску тела, не сцеплен с половыми хромосомами и расположен на одной из аутосом. Такой вывод следует из того, что все особи Р имели серую окраску тела. Это показывает также, что серая окраска доминирует над черной. Обозначим этот ген символом А. Распишем данное скрещивание в генетической символике. [c.104]

    Великим достижением Моргана и его школы в первые два десятилетия нашего века было использование сцепления для локализации генов, расположенных на одной хромосоме, и создание генных карт плодовой мушки Drosophila melanogaster. [c.191]

    Перечисленные выводы вполне справедливы для большинства или даже для всех наследственных дефектов ферментативных систем человека. Последний вывод связан с локализацией гена G6PD в Х-хромосоме. Известно, что в большинстве клеток гетерозиготных женщин у Х-сцепленных генов функционально активен только один из двух аллелей. Это обстоятельство может оказаться полезным для решения проблем, связанных с ростом опухолей и клеточной дифференцировкой. Так, например, было обнаружено, что в клетках лейомиомы матки у женщин, гетерозиготных по двум электрофоретическим вариантам G6PD, присутствует только один тип фермента [1002]. Это можно объяснить происхождением всех клеток опухоли от одной клетки. Подобные наблюдения, позволяющие предполагать моноклональное происхождение опухолей, имеются для большинства неопластических процессов (см. разд. 5.1.6). [c.27]

    В незрелых В-клетках или в любых других клетках V-гены и С-гены той или иной фуппы сцепления, находясь на одной и той же хромосоме, удалены друг от друга на значительное расстояние. Подобная нативная локализация генов для иммуноглобулинов определяется как состояние зародышевой линии (англ. germline ). Однако по мере созревания В-клеток от некоммитированных предшественников к зрелым формам происходит реорганизация гено-72 [c.72]

    Изучение большинства наследственных заболеваний шло именно таким путем. В некоторых случаях хромосомная локализация интересуюш,его гена устанавливается достаточно легко. Это бывает, если у индивидов с аберрантным фенохипом наблюдаются устойчивые аномалии определенной области хромосомы (к примеру, 13д14 делеции при ретинобластоме). К сожалению, для большинства наследственных заболеваний такая благоприятная в плане диагностики ситуация не характерна и для локализации гена необходимо проводить анализ генетического сцепления. [c.205]

    Локализовать ген уже в пределах группы сцепления можно на основе митотического кроссинговера, спонтанного или индуцированного рекомбиногенными факторами (см. гл. 7). Следует помнить, что кроссинговер на участке ген — центромера приводит к гомозиготизации всех генов, расположенных дистальнее точки обмена в половине ядер (клеток) — потомков рекомбинантного ядра (см. гл. 7, рис. 7. 9, fi и рис. 8. 12). Таким образом, митотический кроссинговер можно использовать для локализации генов одного плеча хромосомы по отношению к центромере. [c.189]

    Открытие кроссинговера позволило Т. Моргану и сотрудникам его школы в первые два десятилетия XX века разработать принцип построения генетических карт хромосом. Явление сцепления было использовано ими для выяснения локализации генов, расположенных в одной хромосоме, и создания генных карт плодовой мушки Drosophila melanogaster. На генетических картах гены располагаются линейно друг за другом на определенном расстоянии. Расстояние. между генами определяется в процентах кроссинговера, или в морганидах (1 % кроссинговера равен одной морганиде). [c.120]

    В последние годы достигнуты большие успехи в выявлении сцепления и локализации локусов сцепления в определенных хромосомах, изучены все 24 Фуппы сцепления, построены цитологические карты генов хромосом человека, в которых для каждого сегмента дифференциально окрашенной хромосомы показано, какие гены на каком расстоянии друг от друга там находятся. Ожидается, что среднее количество генов, соответствующих одному сегменту, — несколько сотен. Сегодня генная карта человека достаточно насыщена картировано около 8000 генов, и число это быстро растет. В рамках же международной программы Теном человека к 2СЮ5 г будет картировано большинство генов. [c.123]

    Выяснение степени генетической гетерогенности при любой наследственной болезни проходит через все этапы её изучения описание проявлений на клиническом уровне, изучение типа наследования и локализации гена, выяснение первичного биохимического дефекта, установление молекулярной сущности мутации на уровне ДНК. Генетическая гетерогенность, обусловленная мутациями в разных локусах — межлокусная гетерогенность, — демонстративно видна на примере синдрома Элерса—Данло (11 форм), нейрофиброматоза (по меньшей мере 6 форм), гликогенозов (более 10 форм), витамин О-резистент-ного рахита и т.д. Гетерогенность в упомянутых формах прослеживается даже при применении клинико-генеалогического метода. В этих группах имеются и аутосомно-доминантные, и аутосомно-рецессивные, и сцепленные с Х-хромосомой варианты болезней, т.е. речь идёт о мутациях в локусах, расположенных в разных хромосомах. [c.123]

    Набор из 21 линии дителосомиков (ДТ) применяют для идентификации унивалентной хромосомы у моносомиков и для замещения хромосом. С другой стороны, телоцентрические хромосомы используют также для локализации (картирования) генов в пределах группы сцепления (отдельной хромосомы). Они служат удобной моделью для цитологического маркирования нужных хромосом благодаря их отчетливому морфологическому отличию как в митозе, так и в мейозе. [c.93]

    Сцепление генов в соматических клетках предложено называть син-тенией, от греческого сшд>-совместно, тени -поддерживать. Этот термин введен для того, чтобы отличать данные о хромосомной локализации, полученные в опытах с соматическими клетками, от результатов по сцеплению генов, полученных при анализе родословных. Если два гена присутствуют или оба отсутствуют в гибридных клеточных линиях, то они называются синтеничными. Из результатов, приведенных в табл. 18.1, следует, что гены ТК и GALK синтеничны. Оба этих гена локализованы в семнадцатой хромосоме. [c.297]

    Если два генетических маркера находятся в разных хромосомах, го сцепление между ними отсутствует, т. е. шансы на их совместную передачу потомству равны 50 50. То же справедливо и в отпошепии маркеров, локализующихся на противоположных концах одной и той же хромосомы, из-за большой вероятности их разделения в результате кроссинговера, частота которого в процессе мейоза, при образовании яйцеклеток и сперматозоидов, весьма высока (см. разд. 15.2.3). Чем ближе друг к другу два маркера в пределах одной хромосомы, тем больше вероятность того, что они не будут разделены кроссинговером, а значит, будут переданы потомству совместно. Проведя скрининг больших семейных групп на совместное наследование интересующего нас гена (например, гена, ответственного за какую-нибудь болезнь) и большого числа отдельных ПДРФ-маркеров, можно идентифицировать несколько ПДРФ-маркеров, окружающих данный ген. Таким путем удается локализовать последовательности ДНК, находящиеся поблизости от этого геиа, а в конце концов и ДНК, соответствующую самому этому гену (рис. 5-91). Этот метод используется для локализации многих генов, ответственных за болезни человека. После выделения такого гена можно подвергнуть детальному анализу его белковый продукт (см. разд. 4.6.12). [c.342]

    Доводом в пользу локализации главного гена в Х-хромосоме могло бы стать обнаружение сцепления с Х-маркером, таким, как неспособность различать красный и зеленый цвета. Были приведены данные как в пользу сцепления с этим маркером, так и против него [20333. Некоторое сомнение порождалось Тем обстоятельством, что й1-локус тоже обнаруживал сцепление, несмотря на то что он расположен далеко от локусов, определяющих неспособность различать красный и зеленый цвета аздг- Зг4гЗ). Относительно недавнее исследование продемонстрировало в некоторых родословных тесное сцепление с дефектами цветового зрения при отсутствии сцепления с Хд Доля семейств с [c.127]


Смотреть страницы где упоминается термин Сцепление локализация генов на хромосомах: [c.442]    [c.470]    [c.480]    [c.480]    [c.94]    [c.131]    [c.204]    [c.247]    [c.168]    [c.323]    [c.354]    [c.277]    [c.192]   
Смотреть главы в:

Генетика человека Т.1 -> Сцепление локализация генов на хромосомах




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте