Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синаптическая передача. Медиаторы

    Как показали три простых наблюдения, для синаптической передачи необходим приток ионов кальция в окончание аксона. Во-первых, если в момент прибытия нервного импульса во внеклеточной среде вокруг окончания аксона эти ионы отсутствуют, то медиатор не высвобождается и передачи сигнала не происходит. Во-вторых, если через микропипетку искусственно ввести Са в цитоплазму нервного окончания, выход нейромедиатора происходит тотчас даже без электрической стимуляции аксона (это трудно осуществить на нервно-мышечном соединении из-за малых размеров окончания аксона, поэтому такой эксперимент был проведен на синапсе между гигантскими нейронами кальмара) В-третьих, искусственная деполяризация окончания аксона (тоже в синапсе между гигантскими нейронами) без нервного импульса и в условиях блокады натриевых и калиевых каналов специфическими токсинами [c.306]


    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]

    Многие исследования биохимии синаптической передачи выполнены с препаратами синапсов, которые получают из ткани головного или спинного мозга. При гомогенизации ткани нервные окончания отрываются, мембрана в месте разрыва смыкается и получаются замкнутые пузырьки — синаптосомы их отделяют от других компонентов гомогената методом дифференциального центрифугирования. Синаптосомы секретируют медиатор при воздействиях, изменяющих их трансмембранный потенциал в сторону положительного знака. [c.538]

    Синаптическая передача. Медиаторы М.А.Каменская [c.207]

    Дофамин и норадреналин выполняют функции медиаторов в синаптической передаче нервного импульса адреналин — это гормон мозгового вещества надпочечников, который, в частности, стимулирует мобилизацию депонированных углеводов и жиров. [c.360]


    Холинэргические синапсы — это еще не все синапсы, а ацетилхолин— не единственный медиатор известны у ке многие, но, очевидно, отнюдь не все вещества, которые молено считать нейромедиаторами (трансмиттерами). Нейромедиаторами являются, например, катехоламины (допамин, адреналин и норадрена-лпн), аминокислоты (у-аминомасляная (GABA), глицин, а также, возможно, глутаминовая и аспарагиновая), серотонин (5-гидрокситриптамин, или 5-НТ) и гистамин. Недавно стал расти интерес к отдельным пептидам, таким, как вещество Р и энке-фалины, которые представляются перспективными кандидатами на роль медиаторов. Остаются некоторые сомнения относительно нейро-медиаторной роли пролина, таурина и пуриновых нуклеотидов (таких, как, например, АТР). Для такого рода сомнительных соединений существует термин предполагаемый медиатор (трансмиттер) или кандидат в медиаторы (трансмиттеры). Многие соединения модулируют синаптическую передачу, не будучи нейромедиаторами. Далеко недостаточным критерием является и то, что они высвобождаются в пресинаптической мембране и действуют на постсинаптическую. Для отнесения соединения к медиаторам необходимо соблюдение следующих условий  [c.212]

    Являясь одним из медиаторов синаптической передачи нервных импульсов, обусловленных трансмембранным перемещением ионов, 5-ОТ обнаруживает высокую специфическую активность в определенных структурах нервной ткани. Известно также, что на возбудимость нервных клеток специфическое действие оказывают ионы кальция, имеющие вместе с тем существенное значение в регуляции биоэнергетики организма (Скулачев, 1969). [c.183]

    В отличие от рецепторов, связанных с каналами, не связанные с ионными каналами рецепторы нейромедиаторов, присоединяя лиганд, запускают в постсинаптической клетке каскад ферментативных реакций. В большинстве изученных случаев первая реакция этого каскада ведет к активации G-белка, который либо прямо взаимодействует с ионными каналами, либо регулирует образование таких внутриклеточных посредников, как циклический АМР и Са. Эти посредники в свою очередь или непосредственно влияют на ионные каналы, или активируют киназы, фосфорилирующие различные белки, в том числе и белки ионных каналов. Во многих синапсах имеются как связанные, так и не связанные с каналами рецепторы, присоединяющие одни и те же или различные медиаторы. Если рецептор не связан с каналом, то опосредуемый им эффект, как правило, бывает замедленным и продолжительным и может влиять на эффективность последующей синаптической передачи, что [c.336]

    Преимущество метода срезов в изучении таких пластических свойств нервной системы, как ПТП, заключается в возможности поиска механизмов наблюдаемых явлений. Фактические данные указывают на то, что ПТП, как и другие формы пластичности в гиппокампе, связана с процессами, происходящими в синаптической передаче. Очевидно их локализацию следует искать либо в пре-, либо в постсинаптической области. Большинство исследователей склонны считать, что процессы, ответственные за ПТП, локализованы в пресинаптической области. Особое значение в развитии ПТП придается ионам Са, поскольку при увеличении его концентрации в пресинаптической терминали возрастает выход медиатора в синапсе. Так, перфузия срезов гиппокампа раствором с пониженной концентрацией Са (1 мМ) [или повышенной концентрацией Mg (3.9, 10 мМ)] сопровождается развитием ПТП, но ее амплитуда и длительность значительно меньше, чем при перфузии [c.55]

    Приведенные выше соображения касаются постсинап-тических адренорецепторов. Однако в регуляции адренергической синаптической передачи как в физиологических условиях, так и при патологии немаловажную роль играют также пресинаптические адренорецепторы. Последние реагируют на изменение физиологических концентраций эндогенного иорадреналина, усиливая или ослабляя процесс секреции самого медиатора. Адренорецепторы уже здесь выступают не в роли послушных [c.6]

    Причиной высвобождения ацетилхолина является деполяризация нервного окончания в результате достигающего его потенциала действия. Однако в отсутствие ионов кальция во внеклеточном пространстве высвобождения медиатора не происходит. Мы уже упоминали, что ионы кальция влияют и на пороговую величину потенциала действия. Сейчас кажется очевидным, что они играют ключевую роль в химической синаптической передаче. Деполяризация нервного окончания увеличивает проницаемость мембраны для ионов кальция и, следовательно, их внутриклеточную концентрацию. Однако кальций, попадающий в нервное окончание, должен выделиться снова, если стимуляция Синапса временно прекращается. Имеются многочисленные доказательства того, что внутриклеточная концентрация кальция регулируется митохондриями и такими белками, как кальмодулин и кальциневрин (гл. 7). Митохондрии располагают очень эффективным кальциевым насосом, а ингибиторы митохондриальной функции вызывают, кроме того, количественное увеличение миниатюрного потенциала концевой пластинки, что также свидетельствует об ингибировании поглощения кальция митохондриями. Неясно, куда именно кальций переносится митохондриями с тем, чтобы они сами не перенасытились этими ионами. Еще меньше известно о молекулярном механизме кальциевой стимуляции высвобождения медиатора. Высказаны соображения о вкладе актомиозиниодобного комплекса, но экспериментальных доказательств этого еще нет. Зависимость кальциевого эффекта от его концентрации показывает, что несколько ионов (возможно, четыре) кооперативно активируют высвобождение кванта медиатора. Ионы Mg + конкурируют с [c.200]


    Существенную зависимость научного прогресса от модельных систем можно показать на системе медиатор — рецептор. Понятие рецептор долгое время являлось функциональным описанием, не имеющим молекулярной основы. Успех нейрохимии связан с выделением и химической характеристикой рецепторного белка (гл. 9). В основном это обусловлено выбором идеального материала для модели синаптической передачи нервного импульса электрической ткани электрического угря Ele trophorus ele tri us) и различных видов электрического ската Torpedo) (рис. 12.8 и 12.9). [c.364]

    Два простых наблюдения показывают, что для синаптической передачи необходим приток нонов Са в окончание аксона. Во-первых, если во внеклеточной среде Са отсутствует, медиатор не высвобождается и передачи сигнала не происходит. Во-вторлх, если искусственно ввести Са в цитоплазму нервного окончания при помощи микропипетки, выход нейромедиатора происходит даже без электрической стимуляции аксона, рто трудно осуществить на нервно-мышечном соединении из-за малых размеров окончани аксона поэтому такой эксперимент был проведен на синапсе между гигантскими нейронами кальмара.) Эти наблюдения позволили воссоздать последо вательность событий, происходящих в окончании аксона, которая описана ниже. [c.96]

    Итак, синапсы можно подразделить на возбуждающие и тормозные. Лиганд-зависимые ионные каналы постсинаптической мембраны могут реализовать как тот, так и другой эффект, в зависимости от ионной избирательности данных каналов. Но, как мы уже отмечали, ионные каналы с воротами-не единственные белки постсинаптической мембраны, с которыми взаимодействуют медиаторы. Существует совершенно иной механизм синаптической передачи рецепторы сопряжены здесь с мембранными белками, вызывающими образование второго посредника в постсинаптической клетке (см. разд. 13.3.3). Например, как полагают, многие рецепторы для моноаминов норадреналина и дофамина относятся именно к этому типу. Связывание медиатора с рецептором активирует аденилатциклазу, повышая тем самым внутриклеточную концентрацию циклического АМР. Циклический АМР в свою очередь активирует протеинкиназы, фосфорилирующие в клетке определенные белки например, они могут фосфорилировать ионные каналы и таким образом изменять электрическое состояние клетки. Конечный эффект может быть или возбуждающим, или тормозным. Действительно, циклический АМР способен в принципе вызвать изменение в любом регуляторном механизме клетки вплоть до экспрессии генов. [c.104]

    Редер [69] был поставлен втупик тем фактом, что сам ацетилхолин и близкие к нему вещества (атропин, скополамин и кураре) совершенно не действуют на ганглий, даже в концентрации до 10 2 М, хотя по имеющимся предположениям действие антихолинэстеразных ядов сводится к накоплению ацетилхолина в синапсах. Он сделал вывод, что ацетилхолин не является синаптическим медиатором. Далее, он отверг возможность того, что какую бы то ни было роль играет проницаемость. Вероятно, он сделал это потому, что карбаматы — простигмин и эзерин — оказались одинаково активными в действии на синаптическую передачу, несмотря на наличие четвертичного азота в молекуле простигмина (оба вещества вызывали синаптическую блокаду в концентрации около М),  [c.192]

    Известно 3 варианта химической коммуникации клеток внутри животного организма, различающиеся по расстояниям, на которых они действуют 1) эндокринная и 2) паракринная сигнализация, а также 3) синаптическая передача. В первом случае выделяемые эндокринными клетками сигнальные молекулы-гормоны разносятся током крови по всему организму и достигают самых удаленных клеток-мишеней во втором случае из-за быстрой инактивации и/или связывания клетками-мишенями сигнальные молекулы-медиаторы диффундируют на расстояния порядка миллиметра наконец, при синаптической передаче диффузия ограничивается расстояниями около 0,05 м. Во всех случаях диффузия сигнальной молекулы должна завершаться ее связыванием с особым белком клетки-мишени — рецептором. [c.258]

    К синаптической передаче и связанным с нею метаболическим процессам тесно примыкает вопрос о транспорте веществ в нервной клетке. Нейрон отнюдь не статическая структура, каким он предстает на микроскопических срезах на молекулярном уровне нейрон находится в постоянном движении. Как отмечалось при обсуждении клеточных органелл в главе 4, в теле клетки происходит непрерывный синтез молекул медиатора, макромолекул и мембран пузырьков, которые движутся оттуда в аксон и дендриты (рис. 9.13). Некоторые из этих веществ выходят из окончаний аксона и поглощаются постсинаптическими клетками, как это было показано методом транснейронного транспорта меченых аминокислот, включаемых в белки. Кроме того, окончаниями аксонов захватываются белки и в том числе ферменты, которые движутся по аксону к телу клетки это служит основой для картирования проекций аксонов с помощью пероксидазы хрена. Аналогичное передвижение ряда веществ, включая медиаторы, ферменты и даже такие крупные молекулы, как производные нуклеозидов, происходит в дендритах. Некоторые из этих веществ захватываются из соседних окон- [c.228]

    Принципиально важной для понимания функций РП является иллюстрированная выще способность этих соединений запускать после взаимодействия с рецептором целую гамму процессов на всех уровнях метаболической иерархии клеток от мембраны до генома — с различной продолжительностью — от минут (долей минуты) до часов. Хотя ряд подобных явлений отмечен и в исследованиях действия нейромедиаторов обычного типа, пеггтидные регуляторы имеют важное исходное отличие — более значительную, в общем, продолжительность существования (см. раздел 9.4) и, следовательно, возможность более длительного воздействия на рецепторы. Если РП выступает в данном синапсе как сопутствующий медиатор, то после его воздействия клетка в течение относительно длительного времени может претерпевать сложные изменения своего состояния. В частности, может меняться и восприимчивость к сигналам от разнообразных рецепторов, на ней расположенных (потенциация синаптической передачи, проторение синапсов и др.), и способность к генерации импульсов и т.д. То, что продолжительность таких изменений, вызванных РП, может варьировать от минут до, по крайней мере, суток, и заставляет рассматривать их как один из элементов в механизмах формирования памяти, да и других сложных форм поведения. [c.332]

    Четвертая система — паракринная секреция веществ из клетки— для обеспечения функционирования небольшого числа соседних, рабочих клеток (эпителий кишечника, легкие, желудок). Нередко секрецию медиаторов нервными окончаниями, т. е. экзоцитоз медиаторов и синаптическую передачу информации, выделяют в особую систему секреции. [c.62]

    Характерной чертой синаптической передачи является спонтанный выброс небольшого числа квантов медиатора. Этот процесс происходит в отсутствии импульса, нерегулярен, устойчив к увеличению концентрации ионов Mg и к действию тетродотоксина. При внутриклеточном отведении это явление регистрируется в виде деполяризационных колебаний потенциала небольщой амплитуды и длительности — миниатюрных возбуждающих постсинаптических потенциалов (мВПСП), зарегистрированных, например, в нейронах спинного мозга (Katz, Miledi, 1963). [c.45]

    Депрессия ВПСП указывает на уменьшение эффективности синаптической передачи, которое может выражаться в уменьшении выделения медиатора в ответ на приходящий импульс. [c.48]

    Усиливается ли выброс медиатора в синапсе при развитии ПТП На этот вопрос можно получить ответ, если использовать квантовый анализ процесса выделения медиатора. Впервые такой анализ удалось осуществить Ямамото (Yamamoto, 1982). В его опытах регистрировались внутриклеточные унитарные ВПСП в нейронах поля САЗ поперечных срезов гиппокампа в ответ на стимуляцию гранулярных клеток. Оценивались два параметра синаптической передачи квантовый состав (т) и величина кванта (<7). Оказалось, что для данной синаптической передачи т = 8.3, <7 = 0.28 мВ. При развитии частотной потенциации при неизменном значении величины кванта наблюдалось двукратное увеличение квантового состава, что указывает на увеличение числа выделяемых квантов медиатора во время развития данной формы облегчения в гиппокампе. Вероятно, использование такого метода на срезах будет успешным при анализе других форм пластичности, в том числе и ПТП. [c.56]

    В отличие от холинергических синапсов, постсинап-тическая мембрана которых содержит как рецепторы, так и ацетилхолинэстеразу, разрушающую ацетилхолин, в адренергических синапсах нет ферментов, разрушающих медиатор. Удаление из синапса катехоламинов происходит путем обратного захвата медиатора нерв-аым окончанием. Это активный транспорт, происходящий с большой скоростью и имеющий высокую избирательность. Поступающие в нервное о сончание из синапса катехоламины вновь концентрируются в специальных везикулах и могут повторно участвовать в синаптической передаче. Ингибиторы обратного захвата катехоламинов могут вызывать эффекты, подобные симпатической денервации. Такой эффект вызывает, в част-резерпин, который блокирует обратный захват норадреналина и его перемещение в везикулы. [c.97]

    Участие химических соединений типа медиаторов как генераторов изменений мембранного потенциала и их возможная роль в возникновении ПД у растений пока лишь постулируются на основе представлений, установленных для синаптической передачи у клеток животных. На уровне клетки (одноклеточные и многоклеточные) у организмов, не имеющих синаптических контактов, в том числе и растений, присутс7вие ацетилхолина и биогенных аминов может объясняться их двойной ролью как регуляторов внутриклеточного метаболического обмена и как локальных медиаторов, взаимодействующих с плазмалеммой и мембра-на ш органелл в ответ на внешний сигнал. [c.125]

    Химические сигнальные механизмы различаются по расстояниям, на которых они действуют 1) в случае эндокринной сигнализации специализированные эндокринные клетки выделяют гормоны, которые разносятся кровью и воздействуют на клетки-мишени, находящиеся иногда в самых разных частях организма 2) в случае наракринной сигнализации клетки выделяют локальные химические медиаторы, которые поглощаются, разрушаются или иммобилизуются так быстро, что успевают подействовать только на клетки ближайшего окружения, быть может, в радиусе около миллиметра 3) при синаптической передаче, используемой только в нервной системе, клетки секретируют нейромедиаторы в специализированных межклеточных контактах, называемых химическими синапсами. Нейромедиаторы диффундируют через синаптическую щель, обычно на расстояние около 50 нм, и воздействуют только на одну постсинаптическую клетку-мишень (рис. 12-2). В каждом случае мишень реагирует на определенный внеклеточный сигаал с помощью специальных белков, называемых рецепторами, которые связывают сигнальную молекулу и инициируют ответ. Многие снгаальные молекулы и рецепторы используются в передаче сигаала и по эндокринному, и по паракринному, и по синаптическому типу. Главные различия касаются быстроты и избирательности воздействия сигнала на определенные мишени. [c.339]

    Работа нфвных клеток отличается гораздо большей быстротой и точностью. Они могут передавать информацию на большие расстояния по нервному волокну с помощью электрических импульсов со скоростью более 100 м/с. Только в нервных окончаниях, где высвобождается нейромедиатор, эти импульсы преобразуются в химические сигналы. Химический сигнал нфвной клетки может действовать как паракринный или как синаптический. В первом случае нейромедиатор, подобно локальному химическому медиатору, диффундирует наружу и влияет на все соседние клетки-мишени, у которых имеется надлежащий рецептор. При синаптической передаче сигнал гораздо более точен и действие нейромедиатора офаничено единственной клеткой-мишенью, даже если соседние клетки имеют рецепторы для того же нейромедиатора (рис. 12-3, Б). Поскольку расстояние, на которое нейромедиатор должен в таких случаях диффундировать, меньше 100 нм, процесс длится менее миллисекунды (рис. 12-2). [c.340]

    В отличие от рецепторов, связанных с каналами, не связанные с ионными каналами рецепторы нейромедиаторов, присоединяя лиганд, запускают в постсинаптической клетке каскад ферментативных реакций. В большинстве изученных случаев первая реакция этого каскада ведет к активации G-белка, который либо прямо взаимодействует с ионными каналами, либо регулирует образование таких внутриклеточных посредников, как циклический АМР и d . Эти посредники в свою очередь или непосредственно влияют на ионные каналы, или активируют киназы, фосфорилирующиеразличные белки, в том числе и белки ионных каналов. Во многих синапсах имеются как связанные, так и не связанные с каналами рецепторы, присоединяющие одни и те же или различные медиаторы. Если рецептор не связан с каналом, то опосредуемый им эффект, как правило, бывает замедленным и продолжительным и может влиять на эффективность последующей синаптической передачи, что составляет основу по меньшей мере некоторых форм памяти. Рецепторы, связанные с каналами и пропускающие в клетку Са (такие, как NMDA-рецептор), могут тоже быть ответственны за проявление долговременной памяти. [c.336]

    Во время передачи электрического импульса из пресинаптического нейрона в синаптическую щель выделяется медиатор, который диффундирует в щели к мембране следующего, постсинаптического нейрона и здесь связывается со своим рецептором. Затем медиатор оказывает действие на активность различных ферментов. Одновременно в постсинаптической мембране активируются специальные белки, образующие в мембране каналы, по которым натрий входит в постсннаптический нейрон, а калий выходит наружу. Система возвращается в исходное, невозбужденное, состояние в течение миллисекунды. [c.113]

    Нейрональная мембрана, рассматриваемая как цитоплазматическая мембрана, несет в клетке не только пассивную структурную функцию. Она служит барьером для поддержания внутриклеточного состава и функций клетки (ионы, электрический потенциал, метаболиты) и для ее компартментации (клеточные органеллы, везикулы нейромедиаторов), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение медиатора) роли при передаче нервного импульса. Она обладает специфическими характеристиками, необходимыми для развития нервной системы и установления синаптических связей (клеточная адгезия и узнавание). Она проводит также межклеточные сигналы (гормоны, медиаторы, лекарства). [c.88]


Смотреть страницы где упоминается термин Синаптическая передача. Медиаторы: [c.120]    [c.123]    [c.199]    [c.267]    [c.297]    [c.94]    [c.97]    [c.109]    [c.136]    [c.316]    [c.318]    [c.336]    [c.13]    [c.217]    [c.19]    [c.134]    [c.25]    [c.316]    [c.43]   
Смотреть главы в:

Нейрохимия -> Синаптическая передача. Медиаторы




ПОИСК







© 2025 chem21.info Реклама на сайте