Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение аналитического ультрацентрифугирования

    В этой ситуации книга Т. Боуэна заслуживает большого внимания. В ней в довольно сжатой форме описаны принципы основных методов аналитического и препаративного ультрацентрифугирования и показаны возможности их применения для изучения белков, [c.5]

    Эти методы по сравнению с универсальными и играющими очень важную роль в биохимической практике методами аналитического гель-электрофореза имеют ограниченное применение, поэтому их описание будет кратким. Цель анализа конечного продукта, полученного в результате очистки, заключается в том, чтобы выяснить, содержит ли он один или большее число белков, и обнаружить в нем примеси, даже если они присутствуют в очень малых количествах. Гель-электрофорез позволяет выявить примесь какого-то одного компонента, составляющую 1% содержания основного компонента при условии их хорошего разделения. Однако бывают случаи, когда электрофорез не пригоден для исследования препарата. Это особенно относится к липопротеинам и другим связанным с мембранами белкам, которые при электрофорезе ведут себя необычно и нуждаются в определенных детергентах для поддержания их структурной целостности. В этих случаях, может быть, лучше использовать ультрацентрифугирование как основной или по крайней мере дополнительный метод, позволяющий получить информацию о гетерогенности данного препарата. В опытах по скоростной седиментации хорошо разделяются компоненты с сильно различающимися коэффициентами седиментации, однако если примесь по этому параметру сходна с основным компонентом и особенно если ее относительное количество слишком мало, то этот метод не дает надежных сведений о гетерогенности препарата. Метод седиментационного равновесия более пригоден для детектирования небольших количеств примеси по отклонению экспериментальных данных от теоретической прямой зависимости между логарифмом концентрации и квадратом расстояния от седиментирующей частицы до оси вращения. Однако это от- [c.330]


    Применение аналитического ультрацентрифугирования [c.61]

    Еще одна область применения аналитического ультрацентрифугирования — исследование конформационных изменений макромолекул. Молекула ДНК, например, может быть одно- или двухцепочечной, линейной или кольцевой. Под действием различных соединений (таких, например, как органические растворители) или при повышенных температурах ДНК претерпевает ряд обратимых и необратимых конформационных изменений, которые можно установить по изменению скорости седиментации образца. Чем компактнее молекула, тем меньше ее коэффициент трения в растворе и наоборот чем менее она компактна, тем больше коэффициент трения и, следовательно, тем медленнее будет она седиментировать. Таким образом, различия в скорости седиментации образца до. и после различных воздействий на него позволяют обнаруживать конфор-мационные изменения, происходящие в макромолекулах. [c.63]

    Индивидуальность полученных препаратов гликопротеинов контролируется чаще всего аналитическим ультрацентрифугированием (см., например, ), электрофорезом с подвижной границей или на носителях, хроматографией на ДЭАЭ-целлюлозе. Как и в случае полисахаридов, критерием однородности выделенного гликопротеина может служить неизменность его мономерного состава (моносахаридов и аминокислот) и физико-химических свойств при применении нескольких способов очистки. Для определения нативности выделенных веществ особое значение имеет контроль их биологической активности, в первую очередь иммунологических свойств. [c.567]

    В период между 1925 — 1930 гг. Сведберг с помощью ультрацентрифугирования произвел определение молекулярных масс различных белков. Одновременно применение других аналитических методов, как, например, электрофореза и различных видов хроматографии, привело к развитию аналитической белковой химии. В 1951 — 1956 гг. Сенгер [20, 21] установил аминокислотную последовательность инсулина. Использованные при этом методы легли в основу систематического определения первичной структуры многих белков. Созданный Эдманом в 1966 г. секвенатор и применение масс-спектрометрии в сочетании с ЭВМ как средством регистрации, обработки и оценки масс-спектрометрических данных привели к тому, что к настоящему времени опубликовано более 15 ООО работ, посвященных определению аминокислотных последовательностей, и установлены первичные структуры более чем для 1000 белков. [c.343]

    Оценка чистоты. — Шведские химики Сведберг и Тизелиус внесли большой вклад в развитие химии белка разработкой аналитических методов, чрезвычайно удобных для характеристики этих, высокомолекулярных соединений. Метод ультрацентрифугирования Сведберга служит для определения молекулярного веса. При вращении с очень большой скоростью ячейки, содержащей раствор белка, молекулы белка под действием центробежных сил движутся от центра со-скоростью, зависящей от величины молекулярного веса. Специальная оптическая система дает возможность наблюдать и фотографировать ячейку во время центрифугирования. Молекулярный вес может быть, найден либо из определения седиментационного равновесия, либо по-скорости седиментации- Хотя теоретически первый метод точнее, для достижения равновесия требуется длительное время, и поэтому более точные значения получают, исходя из определения скорости седиментации. При применении ультрацентрифуги можно установить также гомогенность молекул (по величине и форме). Тизелиус предложил (1937) электрофоретический метод разделения молекул белка в электрическом поле молекула белка движется со скоростью, определяющейся величиной молекулы, ее формой, количеством и типом ионизированных групп. Материал, кажущийся гомогенным по растворимости, может содержать компоненты, отличающиеся по электрофоретической подвижности. Жестким критерием чистоты является профиль кривой распределения, получаемой при противоточном распределении молекул (Крейг, см. 31.29). [c.674]


    Заключительная оценка полноты очистки и гомогенности белка требует сочетания ряда применяемых методов. Для предварительного вывода о гомогенности необходимы прежде всего данные о невозможности дальнейшего фракционирования препарата всеми применимыми в данном случае методами. Разумеется, имеются в виду не все возможные приемы, а наиболее эффективные варианты основных методов фракционирования— ультрацентрифугирования, электрофореза, хроматографии, молекулярной фильтрации и др., причем не в препаративных, а в аналитических модификациях. При этом приходится считаться с опасностью того, что выявление, новых фракций может быть обусловлено частичной денатурацией белка при некоторых из этих процедур. С другой стороны, невозможность дальнейшего фракционирования может быть обусловлена недостаточным совершенством использованных разновидностей методов разделения. Нередко оказывалось, что применение более совершенных методов позволяло фракционировать белки, считавшиеся ранее гомогенными. [c.35]

    Очень компактное и вместе с тем полное руководство по применению ультрацентрифугирования в современных биологических исследованиях. После краткого исторического обзора и описания наиболее распространенных ультрацентрифуг автор последовательно рассматривает принципы и возможности оптических систем, используемых в аналитических центрифугах, способы измерения коэффициентов седиментации и диффузии, важнейшие методы определения молекулярной массы, основы количественного анализа смесей, а также методы препаративного ультрацентрифугирования. [c.4]

    Одним из путей стабилизации зон при электрофорезе и изо-электрическом фокусировании, как и при ультрацентрифугировании, служит применение колонок с градиентом плотности. Этот прием может быть использован как для аналитических, так и для препаративных целей. Среда в данном случае не является ограничивающим фактором в отношении размеров разделяемых молекул, а их последующее выделение относительно проще, чем при работе с другими поддерживающими средами. [c.26]

    Каковы различия в принципах и применении между ультрацентрифугированием в градиенте концентрации сахарозы, в градиенте плотности хлорида цезия и аналитическим центр ифугир ОБ анием  [c.285]

    Остальные методы внутрифазного разделения или находят только технологическое применение, или их применение в химическом анализе о) раничено решением частных задач. Так, ультрацентрифугирование является одним из основных методов обогащения изотопов урана. Аналитическое применение ограничено фракционированием макромолекул органических веществ. Из сферы применения электрофореза в газовой фазе можно вспомнить улавливание взвешенных частиц из газовых потоков, в первую очередь, минеральных составляющих или частиц несгоревшего топлива в выбросах тепловьпс электростанций, котельных и т.п. [c.242]

    Впервые идея о применении значительной центробежной силы для осаждения и определения размеров коллоидных частиц была высказана и опробована на практике еще в 1913 г. Думан-ским. Однако потребовались долгие годы теоретических и практических изысканий, прежде чем Сведбергрм (1940 г.) были разработаны теоретические основы данного метода и создана первая ультрацентрифуга со скоростью вращения ротора до 65 ООО об1мин. К настоящему времени методы аналитического и препаративного ультрацентрифугирования получили широкое применение в исследованиях белков и нуклеиновых кислот и при изучении структурных элементов клетки. [c.142]

    При описанном выше ультрацентрифугировании пики, наблюдаемые при помощи шлирен-системы, отвечают границам между раствором и растворителем. Первые, быстрые пики отвечают компонентам, движущимся в окружении более медленных компонентов (фиг. 8). В биохимических смесях некоторые из этих медленных компонентов (например, рибосомы при анализе бактериального экстракта) создают большую вязкость. Измеряемые коэффициенты седиментации могут при этом очень сильно отличаться от приведенного к стандартным условиям значения Поэтому полученные при помощи скоростной седиментации значения s не всегда можно непосредственно использовать при планировании и анализе данных препаративного зонального центрифугирования в градиентах плотности. При зональном ультрацентрифугировании анализируемая смесь наносится в виде слоя на раствор с увеличивающейся по направлению ко дну плотностью (что предотвращает конвекционное перемешивание) и различные компоненты седиментируют в градиенте плотности в виде отдельных зон. Для наслоения смеси можно использовать специальную аналитическую ячейку, в которой техника наслоения принципиально не отличается от обычного препаративного наслоения на градиент. Одна из таких ячеек (Be kman Instruments In .) приведена на фиг. 15. Преимущества применения такой ячейки, как отмечают Виноград и Брунер [11], состоят в том, что она требует меньше исследуемого материала, анализируемые компоненты в ней пространственно разобщены, медленные примеси отстают от быстрее движущихся зон и седиментацию последних можно осуществлять в любом растворителе, не прибегая к предварительному диализу. Растворитель должен быть более плотным по сравнению с [c.67]



Смотреть страницы где упоминается термин Применение аналитического ультрацентрифугирования: [c.488]    [c.25]    [c.222]    [c.36]   
Смотреть главы в:

Методы практической биохимии -> Применение аналитического ультрацентрифугирования




ПОИСК





Смотрите так же термины и статьи:

Ультрацентрифугирование

Ультрацентрифугирование аналитическое



© 2024 chem21.info Реклама на сайте