Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия катионов

    Начинается вторая стадия окисления металла сопровождающаяся образованием микропустот между металлом и окалиной. При этом скорость процесса окисления металла снижается вследствие уменьшения эффективного поперечного сечения для диффузии катионов металла из металла в окалину. Однако существующий градиент химического потенциала окислителя в окалине и связанный с ним градиент концентрации дефектов в кристаллической решетке окисла обусловливают дальнейшую диффузию металла наружу. В результате процесса диффузии внутренняя поверхность окалины обогащается металлом и термодинамическое равновесие нарушается. Градиент концентрации дефектов в кристаллической решетке окалины начинает уменьшаться и система окалина—окислитель стремится к равновесию с окислителем. [c.74]


    I —отрицательных. Поскольку растворы приобретают электрические заряды, то скорость диффузии катионов уменьшается, анионов увеличивается, и с течением времени эти скорости становятся одинаковыми. В стационарном состоянии электролит диффундирует как единое целое. При этом каждый раствор имеет заряд, и разность потенциалов, установившаяся между растворами, соответствует диффузионному потенциалу. Расчет диффузионного потенциала в общем случае затруднителен. С учетом некоторых допущений Планком и Гендерсоном выведены формулы для расчета фд. Так, например, при контакте двух растворов одного и того же электролита с различной активностью (а > аг) [c.472]

    Число катионных вакансий при этом уменьшится, снизится скорость Диффузии катионов через окисную пленку, что приведет [c.84]

    Так как скорость диффузии катионов никеля пропорциональна числу дефектов, скорость окисления никеля тоже должна быть пропорциональна корню шестой степени из величины давления кислорода, что подтверждается опытными данными (рис. 91). [c.131]

    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор [c.472]

    Отсюда следует, что при одном и том же градиенте концентрации скорость диффузии катионов и анионов может оказаться неодинаковой. [c.43]

    Если скорость разряда велика, то весь процесс лимитирует диффузия. При С[ = О, т. е. при условии, что все переносимые вследствие диффузии катионы разряжаются, -эл принимает предельное значение /д. эл-пр = Рэл о. Подставив это соотношение в (XXV. 2), получаем /д. эл//д- эл- пр = (1 — С1/С0) и далее [c.292]

    По уравнению Нернста (ХХУ. 21) вычислить значения коэффициентов диффузии катионов при бесконечном разбавлении растворов и 298 К  [c.305]


    Но согласно второму закону термодинамики, система будет стремиться восстановить прежнее равновесное состояние. Поэтому на электродах сразу же начинаются химические процессы. Уменьшение электростатического потенциала 2п-электрода приведет к ослаблению удерживающих сил и превосходству сил уноса катионов с него в раствор. Вследствие этого катионы начнут покидать 2п-электрод, оставляя на нем свои электроны. Электрический заряд его при этом будет увеличиваться, а электростатический потенциал ф2п — возрастать, стремясь к электродному потенциалу фгп- Одновременно с этим увеличение электростатического потенциала Си-электрода приведет к превосходству удерживающих сил над силами уноса катионов с Си-электрода. В результате будет происходить диффузия катионов из раствора к поверхности электрода, где они будут присоединять к себе часть избыточных электронов. Электрический заряд Си-электрода при этом будет уменьшаться, а электростатический потенциал фси — убывать, стремясь к электродному потенциалу фси- Иными словами, при замыкании электродов элемента Даниэля  [c.238]

    Избыток электронов на катоде гальванической пары приводит к преобладанию сил притяжения катионов к электроду над силами уноса их в раствор. Вследствие этого происходит диффузия катионов из раствора к катоду, на поверхности которого они присоединяют к себе часть его избыточных электронов и восстанавливаются. Электрический заряд катода при этом уменьшается, а электростатический потенциал — убывает, стремясь к электродному потенциалу катода. [c.248]

    В твердых телах реакции определяются чаще всего перемещением катионов, поскольку подвижность анионов в большинстве своем ничтожно мала по сравнению с подвижностью катионов. При этом возможна диффузия катионов одного сорта, сопровождающаяся перемещением электронов, или встречная диффузия катионов разного сорта при сохранении в том и другом случае электро-нейтральности решетки. Так как подвижность разноименных катионов различна, то при их встречном движении возникает электрический потенциал, регулирующий скорость перемещения. [c.211]

    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор —отрицательных. Поскольку растворы приобретают электрические заряды, то скорость диффузии катионов уменьшается, анионов увеличивается, и с течением времени эти скорости становятся одинаковыми. В стационарном состоянии электролит диффундирует как единое целое. При этом каждый раствор имеет заряд, и разность потенциалов, установившаяся между, растворами, соответствует диффузионному потенциалу. Расчет диффузионного потенциала в общем случае затруднителен. С учетом некоторых допущений Планком и Гендерсоном выведены формулы для расчета срд. Так, например, при контакте двух растворов одного и того же электролита с различной активностью (а > ап) [c.472]

    Чтобы понять сущность диффузионного потенциала, допустим, что в цепи граничат два раствора L и L2 одного и того же электролита КА разных концентраций. В этом случае происходит диффузия ионов из раствора Li, более концентрированного, в раствор L2, более разбавленный. Если скорость диффузии катионов больше, то за некоторое время из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор L2 будет содержать избыток положительных зарядов, а раствор L — отрицательных. Каждый раствор имеет заряд. Разность потенциалов, установившаяся между растворами, соответствует диффузионному потенциалу. Величина диффузионного потенциала зависит от температуры, концентрации и подвижности К" " и А, а в целом от ионного состава растворов Li и L2. Обычно она не превышает десятков милливольт. [c.167]

    Диффузия катионов Na+ из растворов на сульфокатионитах в Н-форме [57] [c.100]

    Подвижности различных ионов электролита неодинаковы, поэтому при одном и том же градиенте концентрации скорости диффузии катионов и анионов различны. Вследствие этого при независимой диффузии на границе раздела растворов происходит пространственное разделение зарядов и появляется диффузионный потенциал фд. Возникшее электрическое поле выравнивает скорости движения ионов, и электролит диффундирует как одно целое, подобно недиссоциированной молекуле. [c.143]

    После начала пассивации дальнейший рост электродного потенциала вызывает некоторое эквивалентное повышение поверхностного химического потенциала кислорода, следовательно, обусловливает дальнейшее упрочнение связи поверхностных катионов (т. е. повышение степени пассивации металла). В то же время создающаяся при этом большая разность химических потенциалов между поверхностью твердой фазы и объемом металлической решетки с какого-то момента вызывает встречную диффузию анионов и катионов и постепенное формирование окисленной поверхностной пленки. Это образование или утолщение пленки не вносит ничего принципиально нового в природу лимитирующего акта ионизации. Тем не менее, диффузия катионов в поверхностные вакантные узлы из нижележащих слоев решетки металла может существенно изменять кинетику процесса. Однако именно в результате диффузии, поддерживающей химический потенциал металла в поверхностном слое выше равновесного, и появляется у пассивного металла на поляризационной кривой участок постоянной скорости растворения, которого нет у индивидуального окисла. [c.441]


    Одиночные электролиты. Полностью ионизированный электролит в растворе (например, Na l в воде) состоит из положительно и отрицательно заряженных ионов. При наличии единственного электролита в растворе содержится по одному виду положительных и отрицательных ионов, причем во избежание возникновения очень сильных электрических полей концентрации обоих видов ионов должны быть практически равны во всех точках. Поэтому при диффузии электролита скорость диффузии катионов и анионов должна быть одинакова. Однако собственные коэффициенты диффузии каждого из них могут отличаться (например, в растворе НС1 ион обладает гораздо более высоким собственным коэффициентом диффузии, чем ион С1"). В результате тенденции к более быстрой диффузии одного из ионов возникает небольшое разделение зарядов, приводящее к градиенту потенциала, который замедляет ионы и ускоряет ионы 1 по сравнению со скоростями, с которыми они должны были бы диффундировать. При расчете действительного эффекта необходимо знать собственный коэффициент диффузии каждого иона, а также его подвижность, т. е. скорость миграции при градиенте потенциала единичной силы. Обе эти величины в действительности пропорциональны одна другой, т. е. [c.26]

    Эти механизмы диффузии имеют место при росте защитных пленок первый — при образовании пленок ZnO, dO, ВеО, AI2O3 и др. (рис. 35, а), второй — при образовании пленок с пустыми катионными или анионными узлами в кристаллической решетке, например Си О, FeO, NiO, СоО (рис. 35, б), a-F aOg, Т1О2 (рис. 35, в) и др. Диффузия катионов в защитной пленке для соблюдения электронейтральности сопровождается одновременным перемещением в том же направлении эквивалентного числа электронов в междоузлиях при первом механизме и по электронным дыркам (катионам с более высокой валентностью) при втором механизме. [c.60]

    Для ряда сплавов было установлено, что менее благородные металлы Ме (Са, Сг, 8 , Т1, 1.] и Мп в меди) образуют легко различимые отдельные слои (прилегающие к поверхности сплава), на которых образуется окисел более благородного легируемого металла Mt (закиси меди Си О). Для того чтобы эти промежуточные слои оказывали защитное действие, необходимо выполнение следующих условий-. I) промежуточный слой должен образовывать когерентное (сцепленное) покрытие на металле без образования таких дополнительных каналов диффузии, как трещины или проницаемые межзеренные границы 2) скорости диффузии катионов (Ме"+ и М "+) и анионов в этом слое должны быть малы 3) пов.ерхност-ные окислы не должны образовывать легкоплавких эвтектик. [c.108]

    Продукты коррозии железа, образующиеся в сероводородсодержащих средах, имеют общую формулу Ре Зв и оказывают существенное влияние на кинетику коррозионного процесса. Структура и защитные свойства сульфидов железа зависят от условий образования, главным образом от парциального содержания сероводорода в среде. Рентгеноструктурны ми и электронографическими исследованиями было установлено, что при низких концентрациях сероводорода (до 2,0 мг/л) сульфидная пленка состоит главным образом из троилита Ре5 и пирита РеЗа с размерами кристаллов до 20 нм. При концентрациях сероводорода от 2,0 до 20 мг/л дополнительно появляется небольшое количество кансита РедЗз. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит и размеры кристаллов увеличиваются до 75 нм. Кансит имеет несовершенную кристаллическую решетку, поэтому он не препятствует диффузии железа и не обладает защитными свойствами. В результате устанавливается постоянная и довольно высокая скорость коррозии. Кристаллические решетки пирита и троилита имеют относительно небольшое число дефектов, тормозят диффузию катионов железа и оказывают некоторое защитное действие. [c.18]

    При твердофазных реакциях (разд. 33.9.2.5), приводящих к образованию алюмомагниевой шпинели, происходит встречная диффузия катионов, т. е. ионы и А1 проникают через [c.605]

    Однако действительная картина диффузионного процесса при реакции в твердых смесях не всегда соответствует теории Вагнера. Например, при образовании цинковой шпинели по реакции ZnO-f +А120з 2пА1204 качественные опыты показали, что перенос вещества через слой шпинели должен преимущественно осуществляться в результате перемещения иопов Zn + и 0 , т. е. возможно перемещение не только катионов, но и анионов, или ионов Zn + и эквивалентного количества электронов. Встречной диффузии катионов цинка и алюминия при этом не установлено. [c.212]

    Рассмотрим диффузию электролита Mv+Av (рис. 13), который полностью диссоциирует на ионы М - - и А - из области раствора с концентрацией l Б область с концентрацией ( i> 2). Если коэффициенты диффузии катионов и анионов равны между собой, то процесс ничем не отличается от обычной диффузии незаряженных частиц. Однако если D+ФО-, то в растворах электролитов возникают специфические явления. Предположим, что D >-D+ (например, в водном растворе Na l). При этом условии анионы в начальный момент процесса диффузии будут перемещаться слева направо (рис. 13) быстрее, чем катионы. В результате этого произойдет пространственное разделение зарядов и возникнет электрическое поле, которое будет ускорять движение катионов и замедлять движение анионов. Следовательно, через некоторый промежуток времени скорости перемещения катионов и анионов выравняются (у+=и ) и в этих условиях можно говорить об общем потоке электролита. Однако этот поток не является обычным потоком диффузии, поскольку между двумя областями раствора с концентрациями l и Сг устанавливается стационарная разность потенциалов — так называемый диффузионный потенциал Афд фф. [c.56]

    Для системы, представленной на рис. 13, Афд фф определяет разность потенциалов между правой и левой частями сосуда, разделенного пористой перегородкой. При выбранных условиях D >D+ и сС>Сг величина Дфд фф<0 это соответствует тому, что правая сторона пористой перегородки заряжается отрицательно по отношению к ее левой стороне за счет первоначальной более быстрой диффузии анионов. Из уравнений (IV.21) и (IV.22) вытекает, что при равенстве коэффициентов диффузии катионов и анионов 0эфф=0+=0 , а диффузионный потенциал Афд фф=0. [c.57]

    При электролизе Си304 с медными электродами коэффициент диффузии катиона равен 0,72-10- см -с . Чему равен коэффициент диффузии аниона, если абсолютные скорости движения катиона и аниона 36-10 и 74-10" см2 С В соответственно. [c.32]

    Диффузион1 ый потенциал возникает на границе жидкостного соединения вследствие различия в скоростях диффузии катионов и анионов, при наличии градиента концентрации. Различная скорость диффузии ионов нарушает электрическую нейтральность в тонком пограничном слое и является причиной возникновения скачка потенциала. Диффузионный потенциал нельзя считать равновесным, хотя его величина в условиях стационарной диффузии может оставаться неизменной в течение длительного времени. Вместе с тем диффузионный потенциал отвечает незначительному отклонению от равновесного состояния, поэтому вполне возможна его термодинамическая трактовка. [c.213]


Смотреть страницы где упоминается термин Диффузия катионов: [c.12]    [c.84]    [c.85]    [c.112]    [c.126]    [c.501]    [c.196]    [c.114]    [c.606]    [c.501]    [c.188]    [c.199]    [c.188]    [c.85]    [c.86]    [c.101]    [c.159]    [c.172]    [c.206]    [c.365]    [c.188]    [c.184]    [c.375]   
Цеолитовые молекулярные сита (1974) -- [ c.409 , c.412 , c.563 , c.588 , c.596 ]




ПОИСК







© 2025 chem21.info Реклама на сайте