Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика в каноническом виде

    Термодинамика в каноническом виде 249 [c.3]

    Объяснение третьего закона термодинамики можно дать на основании статистического определения энтропии, связывающего эту функцию с числом квантовых состояний, доступных системе. Будем исходить из канонического распределения и запишем статистическую сумму системы при заданных Т, V и N в виде [c.168]

    Статистическая термодинамика для описания сорбции в микропористых системах может быть построена из рассмотрения микрополостей как квазинезависимых подсистем большого канонического ансамбля. Вопрос сложности структуры здесь обходится допущением, что микрополости можно отождествлять с такими подсистемами. На этой идее основана интересная работа Бакаева [2], данные которой можно распространить с цеолитов (для которых она была развита) и на другие микропористые сорбенты. Уравнение изотермы сорбции, полученное Бакаевым, в предельных случаях приводится к уравнению изотермы адсорбции Ленгмюра и, следовательно, при самых малых заполнениях — к изотерме Генри. Однако общее уравнение изотермы здесь имеет слишком сложный вид, и автору работы не удалось показать, что оно при средних и больших заполнениях переходит в гауссову функцию. [c.407]


    В последней части пятой главы обсуждается с различных точек зрения приближение системы к положению равновесия и связанная с этим процессом проблема необратимости макроскопических явлений. Этого вопроса автор касался уже в предыдущих главах. Вводятся понятия о микро- и макросостояниях и о крупнозернистом разбиении фазового пространства. Используется принцип равных априорных вероятностей и другие положения статистической механики и термодинамики, в частности различные аспекты понятия энтропии. Выводится знаменитая формула Больцмана для энтропии, распределение Больцмана для наиболее вероятного макросостояния. Дается представление о трех видах канонических ансамблей в статистической механике, о статистических суммах и связях этих понятий с энтропией и другими термодинамическими функциями системы. Наконец, применяются понятия о флуктуациях и среднеквадратичном отклонении. [c.7]

    Следует иметь в виду, что при использовании вместо термодинамики статистической механики макроскопически равновесное состояние системы должно быть также охарактеризовано точно и полно. Микроскопические параметры, которые являются необходимыми для расчета всех возможных механических состояний системы, предполагаются заранее известными. Если макроскопическое состояние системы определяется т интенсивными переменными. .. /то И п — т экстенсивными переменными и +х Ип, то экстенсивные переменные 1)1. .. Пт, канонически связанные с переменными. .. /т, являются как раз теми параметрами, только среднее значение которых можно определить исходя из статистической механики. Так, например, если термодинамическое состояние системы задается определенными значениями переменных Г, V и. ... .. (числом молей), то статическая механика может дать только среднее или наиболее вероятное значение внутренней энергии. Если термодинамическое состояние определяется значениями переменных Г, р и. ... .., то статистическая механика позволяет определить только средние или наиболее вероятные значения внутренней энергии и и объема V. Отсутствие дополнительной информации об объеме в последнем случае является причиной того, что теплоемкость при постоянном объеме рассчитывается теоретически легче, чем теплоемкость при постоянном давлении. [c.27]

    Температура в статистической термодинамике вводится как модуль канонического распределения, так что плотность распределения вероятностей для системы, обменивающейся энергией с окружением, имеет вид [c.186]


    Решение этих основных задач требует рассмотрения множества микросостояний, совместимых с внешними условиями, в которых находится система. Это является необходимым, так как заданному макросостоянию, т. е. условиям, в которых находится система, соответствует обычно чрезвычайно большое множество микросостояний, с помощью которых это макросостояние реализуется. Если заданы условия, в которых находится 1 моль идеального газа, например его объем и температура (его макросостояние), то с микроскопической точки зрения этим условиям удовлетворяет огромное число микросостояний. При заданном макроскопическом состоянии нельзя указать, в каком именно микроскопическом состоянии находится система, и статистическая термодинамика для решения своих задач должна применить теорию вероятностей, т. е. ее метод должен быть статистическим. Естественно допустить, что наблюдаемые на опыте величины могут быть найдены как средние величины, вычисленные по множеству допустимых микросостояний. Этим именно путем и идет статистическая термодинамика. В зависимости от внешних условий, в которых находится изучаемая система, в статистической термодинамике применяется вычисление двух видов средних а) микроканони-ческих средних, вычисляемых при условии, что энергия системы постоянна (изолированная или замкнутая система). При этом все микросостояния являются равноправными, и следует допустить, что они являются равновероятными б) канонических средних, т. е. средних, вычисляемых при условии, что температура системы постоянна (система в термостате). При этом предполагается, что система находится в состоянии термодинамического равновесия. Для системы, [c.288]

    Здесь скачок потенциала А% измеряется от потенциала электрокапиллярного максимума 7шах t s, До соответственно число молекул в единице объема, электронная поляризуемо сть и дипольный момент молекул растворителя, контактирующего с жидким металлом, пв — показатель преломления растворителя). Таким образом, из обобщенного уравнения первого и второго начал термодинамики (записанного с учетом механической работы и работы поляризации поверхностного слоя) следует уравнение зависимости поверхностного натяжения жидкого металла от потенциала через молекулярные параметры контактирующей с ним среды в виде канонического уравнения параболы. [c.261]

    При расчетах по методу Монте-Карло исходными являются самые общие ( юрмулы статистической термодинамики и предположение о виде потенциала межмолекулярного взаимодействия (неточность, связанная с использованием периодических граничных условий, как мы отмечали, обычно невелика и может быть учтена путем рассмотрения результатов для различных М). Если генерируются достаточно длинные цепи, чтобы сходимость среднего по цепи к среднему каноническому была обеспечена, то результаты расчетов по методу Монте-Карло можно считать точными в пределах статистических ошибок. Расчеты по методу Монте-Карло для плотного аргона с использова- [c.428]

    В гл. VI из вариационного принципа наименьшего рассеяния энергии, представленного через силы, выводится уравнение Фурье для тенлонроводностн (во всех возможных видах), полная система уравнений Фика для многокомпонентной изотермической диффузии и обобщенное уравнение Навье — Стокса для вязких течений. Вывод этих уравнений из нового, силового , представления принципа наименьшего рассеяния энергии доказывает, что такое представление является более полезным, нежели первоначальное. Кроме того, опираясь на это новое представление, мы имеем возможность сформулировать новый интегральный принцип термодинамики. После общей формулировки интегрального принципа и введения функции Лагранжа для термодинамики показано, что уравнения Эйлера — Лагранжа, относящиеся к интегральному принципу, эквивалентны полной системе уравнений переноса. Как непосредственная иллюстрация применения интегрального принципа проводится вывод уравнений переноса, описывающих различные неизотермические явления с учетом перекрестных эффектов. Обсуждается связь между интегральным принципом термодинамики и принципом Гамильтона для полей. Наконец, после вывода канонических полевых уравнений, соответствующих интегральному принципу термодинамики, рассматривается преобразование Лежандра диссипативных плотностей лагранжиана и гамильтониана и приводится каноническая форма интеграла рассеяния. [c.28]

    Приведенное перечисление применений принципа наименьшего рассеяния энергии показывает, что его представление через силы более плодотворно, чем представление через потоки, и, кроме того, что уравнения Эйлера—Лагранжа, относящиеся к интегральному принципу, эквивалентны полной системе уравнений необратимых процессов переноса. Для непосредственного доказательства этого положения и как пример использования интегрального принципа мы выведем уравнения переноса для неизотермического случая, в котором учитываются перекрестные эффекты, т. е. взаимосвязь между явлениями (Верхаш [81]). Затем, исходя из представления принципа наименьшего рассеяния энергии через силы, дается общая форма уравнения переноса (Дьярмати). Этот вывод позволяет установить в общем виде внутреннюю связь между интегральным принципом и принципом наименьщего рассеяния энергии, точнее, его представлением через силы. Рассматривается связь между принципом Гамильтона и термодинамическим интегральным принципом (Дьярмати [78]) и определяются канонические уравнения поля, относящиеся к интегральному принципу термодинамики (Верхаш [83], Войта [84]). Наконец, приводятся преобразования Лежандра для потенциала [c.205]



Смотреть страницы где упоминается термин Термодинамика в каноническом виде: [c.255]    [c.408]    [c.408]    [c.236]   
Смотреть главы в:

Неравновесная термодинамика -> Термодинамика в каноническом виде




ПОИСК





Смотрите так же термины и статьи:

Канонический



© 2024 chem21.info Реклама на сайте